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INTRODUCTION

Video-to-Music Generation Why Music Matters in Video
* Given an inputvideo, automatically generate background music that aligns - Music enriches video content by enhancing emotion, rhythm,
with video content and immersion.

Conclusion

- Well-synced music and visuals drive engagement and virality.

What Makes this Challenging:
o Temporal synchronization (e.g., beats matching motion)
o Musical Coherence (e.g. structure and emotional flow)
o These two goals may be at odds with each other

Input Video Background Music

METHOD

Data Collection Model Architecture

We used a subset of the ~20,000 video-music pairs from V2M20K
Dataset (13293 Training, 3798 Evaluation, 1899 Validation)

This dataset was carefully curated to have high audio-video
alignment

Each sample includes the first 30 seconds of high-quality,
stylistically diverse video—-music content (e.g., trailers, ads,
documentaries).

Sourced from YouTube using yt-dlp and took several strategies to avoid
throttle limits and evade detection

Video frames were extracted and audio source separation techniques

Hypothesis: To alighed background music we need to capture both
long-range visual cues with fine-grained motion features .
o CLIP Embeddings : Capture longer-range visual semantics
o Optical Flow Embeddings: Capture fine-grained motion
dynamics
o Cross-Attention Fusion: Combines CLIP and Optical Flow
embeddings and projects them to token decoder's Embedding
Space
o Msuic Token Decoder: Predicts next audio tokens conditioned on
fused video context

were used to remove vocals and retain instrumental tracks
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RESULTS

Baseline: Model Params Training Samples FAD| KLD(®P||Q), KLD@Q|P)! Chroma 1

- We benchmark our model against VidMuse VidMuseM 1.9B 360k 2.13 1.32 0.98 0.056

- Like our approach, VidMuse conditions MusicGen using video- Our Model-S 487TM 20k 2.87 1.48 1.08 0.058

. Table 1. Comparison of our model against VidMuse-M across various evaluation metrics. While VidMuse-M benefits from a significantly
based embeddi Ngs larger parameter count and training dataset, our model demonstrates competitive performance—particularly in Chroma similarity, which

- It uses a rolling attention window over short- and long-term video refects musical coherence and alignment.
features to model temporal context * Key Insight: Our model has 5x fewer parameters and is trained on 8x

- Effective, but computationally expensive and limited by a fixed less data yet remains competitive with VidMuse.
context window * It's able to outperform the baseline on chroma similarity, the most

musically meaningful metric

Metrics Designh Advantages:

- Kullback-Leibler Divergence (KLD): Measures divergence between * Simplified Temporal Attention: Cross-attention along only the
the statistical distributions of generated and real audio. temporal axis simplifies learning and may enhance alignment.

- Fréchet Audio Distance (FAD): Measures how close generated * Rich Feature Input: Use of CLIP embeddings + optical flow provides
audio istoreal audio in a learned feature space (VGGish better motion and semantic context than VidMuse’s rolling window
embeddings). strategy.

- Chroma Cosine Similarity: Compares the harmonic content of two  High-Quality Dataset: V2M dataset’s strong audio-visual alighment
audio clips using 12-dimensional chroma vectors (one per pitch reduces noise, enabling high performance even with fewer training
class). samples.

CONCLUSION & FUTURE WORK
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generation - Fuse video and motion embeddings
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Excessively large datasets may be unnecessary Evaluations with text embeddings

if data quality is high . - Enable users to condition output on
, . i - Source additional benchmark ,

Given our performance against V2M, spatial text as well as video
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