

Video-to-Music Generation

Scott Merrill¹, smerrill@unc.edu; Titus Spielvogel¹, tis@cs.unc.edu

1. Department of Computer Science, UNC-Chapel Hill

Poster Session for COMP 790 – Vision Transformer

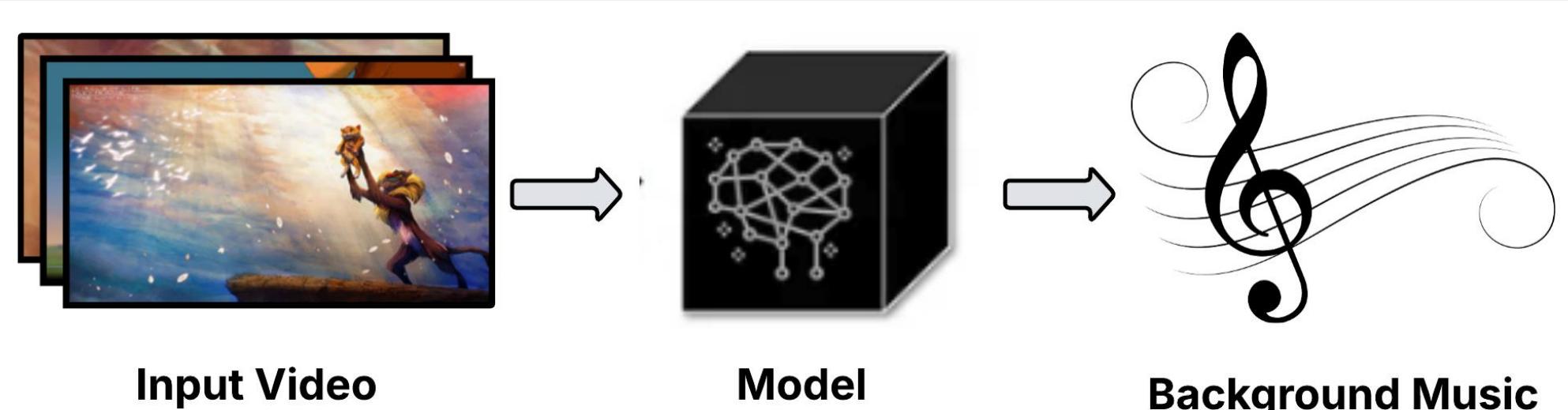
UNC
DEPARTMENT OF
COMPUTER SCIENCE

THE UNIVERSITY
OF NORTH CAROLINA
at CHAPEL HILL

INTRODUCTION

Video-to-Music Generation

- Given an input video, automatically generate background music that aligns with video content



Why Music Matters in Video

- Music enriches video content by enhancing emotion, rhythm, and immersion.
- Well-synced music and visuals drive engagement and virality.

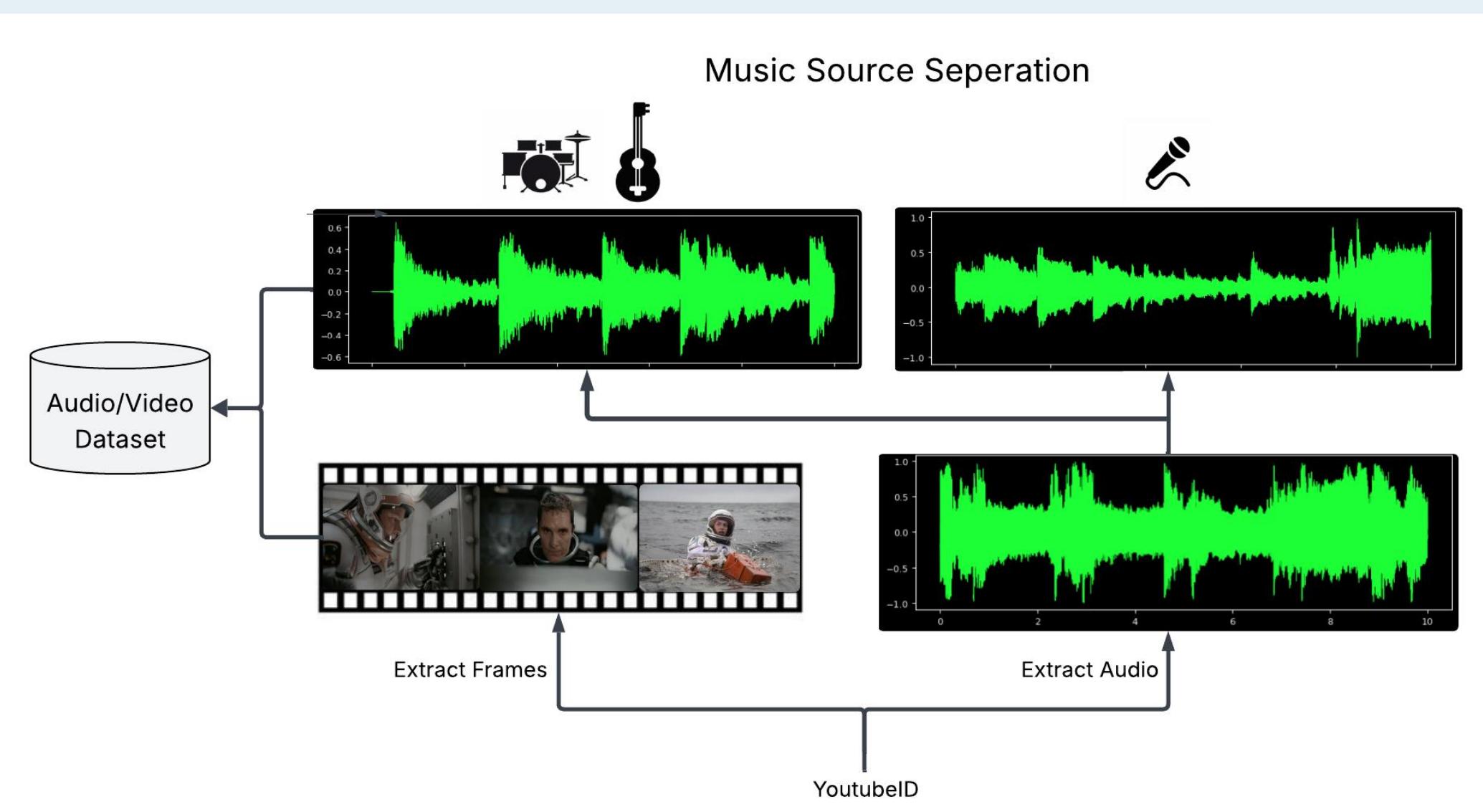
What Makes this Challenging:

- Temporal synchronization (e.g., beats matching motion)
- Musical Coherence (e.g. structure and emotional flow)
- These two goals may be at odds with each other

METHOD

Data Collection

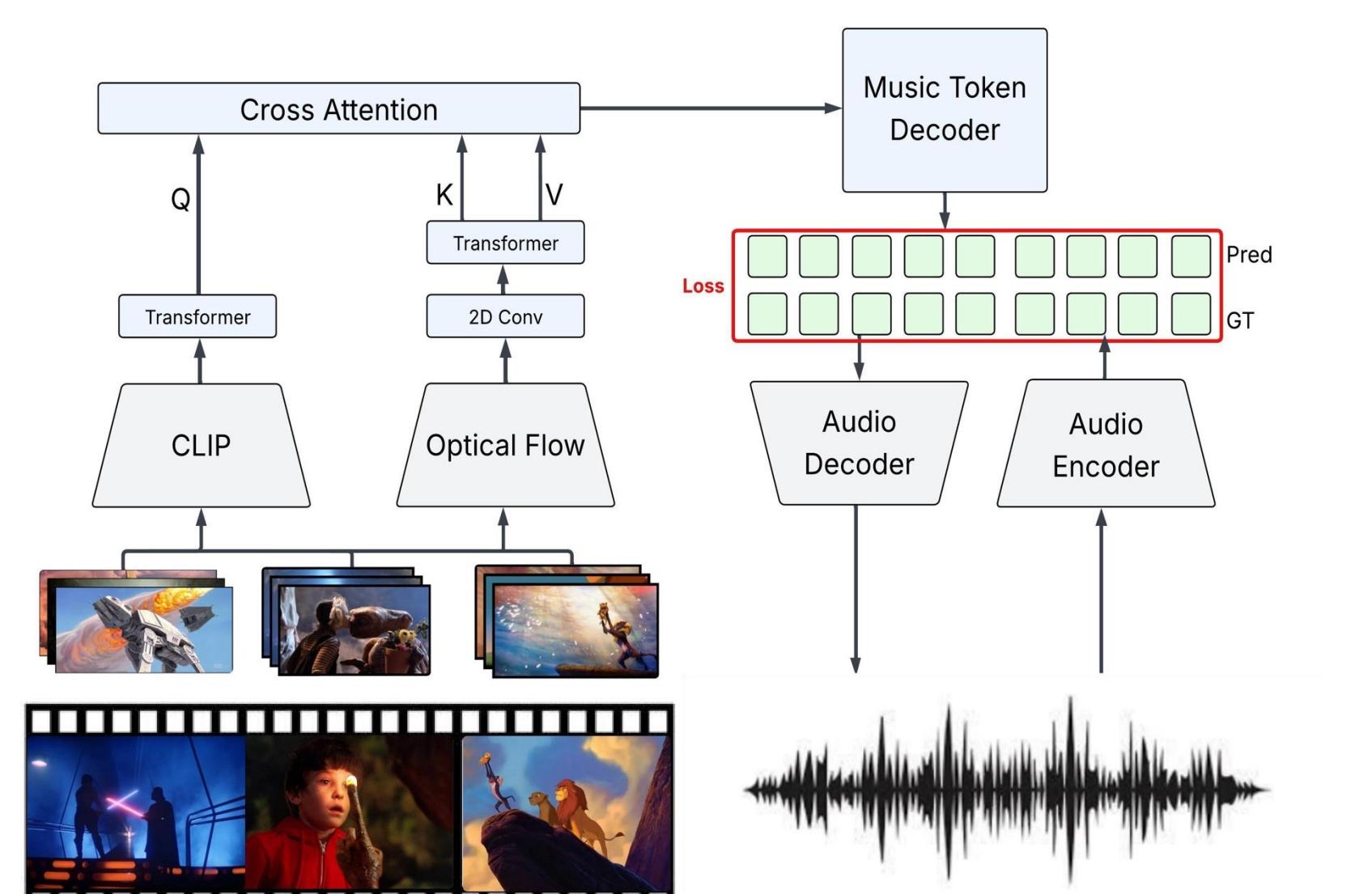
- We used a subset of the ~20,000 video-music pairs from V2M20K Dataset (13293 Training, 3798 Evaluation, 1899 Validation)
- This dataset was carefully curated to have high audio-video alignment
- Each sample includes the first 30 seconds of high-quality, stylistically diverse video-music content (e.g., trailers, ads, documentaries).
- Sourced from YouTube using yt-dlp and took several strategies to avoid throttle limits and evade detection
- Video frames were extracted and audio source separation techniques were used to remove vocals and retain instrumental tracks



Model Architecture

Hypothesis: To aligned background music we need to capture both long-range visual cues with fine-grained motion features .

- CLIP Embeddings : Capture longer-range visual semantics
- Optical Flow Embeddings: Capture fine-grained motion dynamics
- Cross-Attention Fusion: Combines CLIP and Optical Flow embeddings and projects them to token decoder's Embedding Space
- Music Token Decoder: Predicts next audio tokens conditioned on fused video context



RESULTS

Baseline:

- We benchmark our model against VidMuse
- Like our approach, VidMuse conditions MusicGen using video-based embeddings
- It uses a rolling attention window over short- and long-term video features to model temporal context
- Effective, but computationally expensive and limited by a fixed context window

Metrics

- Kullback-Leibler Divergence (KLD): Measures divergence between the statistical distributions of generated and real audio.
- Fréchet Audio Distance (FAD): Measures how close generated audio is to real audio in a learned feature space (VGGish embeddings).
- Chroma Cosine Similarity: Compares the harmonic content of two audio clips using 12-dimensional chroma vectors (one per pitch class).

Model	Params	Training Samples	FAD ↓	KLD(P Q)↓	KLD(Q P)↓	Chroma ↑
VidMuse-M	1.9B	360k	2.13	1.32	0.98	0.056
Our Model-S w/o motion						
Our Model-S	487M	20k	2.87	1.48	1.08	0.058

Table 1. Comparison of our model against VidMuse-M across various evaluation metrics. While VidMuse-M benefits from a significantly larger parameter count and training dataset, our model demonstrates competitive performance—particularly in Chroma similarity, which reflects musical coherence and alignment..

- Key Insight:** Our model has 5x fewer parameters and is trained on 8x less data yet remains competitive with VidMuse.
- It's able to outperform the baseline on chroma similarity, the most musically meaningful metric

Design Advantages:

- Simplified Temporal Attention:** Cross-attention along only the temporal axis simplifies learning and may enhance alignment.
- Rich Feature Input:** Use of CLIP embeddings + optical flow provides better motion and semantic context than VidMuse's rolling window strategy.
- High-Quality Dataset:** V2M dataset's strong audio-visual alignment reduces noise, enabling high performance even with fewer training samples.

CONCLUSION & FUTURE WORK

Conclusion

- Both fine-grained motion and long-range context is necessary for video-to-music generation
- Excessively large datasets may be unnecessary if data quality is high
- Given our performance against V2M, spatial fusion of embeddings may be unnecessary

1

Expand Evaluation

- Include addition quantitative metrics such as AV-Align
- Conduct Human Centered Evaluations
- Source additional benchmark models to compare to

2

Text-Based Conditioning

- Fuse video and motion embeddings with text embeddings
- Enable users to condition output on text as well as video