
Skill-Acquisition in
LLM Agents

Isai Garcia-Baza, Scott Merrill, Titus Spielvogel

1

Problem

Problem Statement:
- Given an agent that interacts with an environment to solve a set of

problems using a set of primitive actions
- Learn new actions which are a composition of primitive actions that are

helpful in solving the set of problems

Key Idea: Equip the agent with the ability to prompt an LLM to learn new
actions and decide which actions to take next

Input: Environment description, environment start state and goal state, set of
problems, primitive actions, few shot examples for LLM Prompts

Output: A set of learned actions (their python code and their description)

 2

Gripper Environment

- 2 rooms, 6 balls, and a robot with 2 grippers

- 3 possible actions:
- move(roomA, roomB),
- pickup(obj, room, gripper)
- drop(obj, room, gripper)

- Dataset contains 20 problems each problem is
described by a initial state and goal state of the
environment (e.g. Ball 1 is in Room A…)

- 3 problems for training, 17 problems for testing

3

Input/Output Example - Gripper

Actions: move(roomA, roomB), pickup(obj, room, gripper), drop(obj, room, gripper)
Initial State: Ball 1, 2, 3, 5 are in Room A, Ball 4, 6 are in Room B, Robot is in Room A, Right and Left
Gripper are free
Goal State: Ball 4, 6 are in Room A

4

def move_objects(room1, room2, objects, gripper):
 for obj objects:
 pickup(obj, room1, gripper)
 move(room1, room2)
 drop(obj, room2, gripper)
 move(room2, room1)

Description: This actions moves all objects from one room
to another using a gripper.
Input: room1 (string), room2 (string), objects (list): list of
objects to move from room1 to room2, gripper (string)
Required World State: all objects must be in room1, the
robot must be in room1, gripper must be free
Resulting World State: all objects are now in room2, the
robot is in room1

Output

Input

Solution: Modifications to LearnAct

Hypothesis 1: While GPT-3.5 can handle 16k-tokens, shorter prompts may be better
➔ Shorten prompts and made them more precise (docstrings, understand state of the

world, etc.)

Hypothesis 2: LLM models fine tuned on python code are better at coding, while GPT-3.5 is
better for reasoning
➔ Differentiated between code generation and reasoning tasks

Hypothesis 3: Using critique methods from LLM literature, we can prompt LLM to
iteratively improve it’s code
➔ Add a critic LLM prompt to correct and improve original code generation result

5

- Modification motivated by the Voyager [4] and LearnAct Paper [1]

Methods

6

Critique/Improve
Code

Generate Code
from Descriptions

Generate Action
Descriptions

Create Tools Solve Problems
in Environment

Optimize Tools

Decide what tool
to use next

Environment

Execute
Tool

Get
Observation

Identify best tool
based on score

Improve best tool
Based on Errors

GPT-3.5

Code Llama

Critique/Improve
Code

Generate Action
Descriptions

Create Tools Solve Problems
in Environment Optimize Tools

Decide what tool
to use next

Environment

Execute
Tool

Get
Observation

Identify best tool
based on score

Improve best tool
Based on Errors GPT-3.5

Code Booga

Modified

Generate Code
from Descriptions

Methods

Critique/Improve
Code

Generate Code
from Descriptions

Generate Action
Descriptions

Create Tools
You are a robot with a gripper that can pickup and
move objects between different rooms.

Here are the actions in the domain:
<List of Tools and their Docstring>

Please combine at least two of the above actions into
functions composite helper functions.
Please list a description, the inputs, the required
and resulting world state.

Prompt

Methods

Critique/Improve
Code

Generate Code
from Descriptions

Generate Action
Descriptions

Create Tools

Response

carry_to(robot_loc, object_name, object_loc,
 destination_loc, gripper_tool):

<Description>
<Inputs>
Required World State,
Resulting World State:
Basic Functions Used

move_object(...):
...

Methods

Critique/Improve
Code

Generate Code
from Descriptions

Generate Action
Descriptions

Create Tools

Prompt

Assume you have access to the the following functions:
<List of Tools and their Docstring>

You will be given a function description and your task
is to write that function.

Example 1:
<one shot example>

Now please implement the function:

 carry_to(robot_loc, object_name, object_loc,
 destination_loc, gripper_tool)

 <Docstring of carry_to>

Methods

Critique/Improve
Code

Generate Code
from Descriptions

Generate Action
Descriptions

Create Tools

Response
def carry_to(robot_loc, object_name, object_loc,
 destination_loc, gripper_tool):

 move(robot_loc, object_loc)
 pick(object_name, object_loc, gripper_tool)
 move(object_loc, destination_loc)
 drop(object_name, destination_loc, gripper_tool)

Methods

Critique/Improve
Code

Generate Code
from Descriptions

Generate Action
Descriptions

Create Tools

Prompt

Please read through all the instructions carefully
and analyze the produced code for any errors.

If there are errors in the code please correct them,
otherwise return the same code.

<python code>

Methods

Critique/Improve
Code

Generate Code
from Descriptions

Generate Action
Descriptions

Create Tools

Response

The provided code is correct and does not
contain any errors.

Methods

14

Critique/Improve
Code

Generate Code
from Descriptions

Generate Action
Descriptions

Create Tools Solve Problems
in Environment

Optimize Tools

Decide what tool
to use next

Environment

Execute
Tool

Get
Observation

Identify best tool
based on score

Improve best tool
Based on Errors

Methods

Solve Problems
in Environment

Decide what tool
to use next

Environment

Execute
Tool

Get
Observation

Prompt

You are a robot with a gripper that can move objects
between different rooms.

There are actions defined in this domain:
 <List of primitive Tools and their Docstring>
 carry_to(...)
 <Docstring for carry_to>
 move_object(...)
 <Docstring for carry_to>

Here are examples:
<few shot examples>

You should perform actions to accomplish the goal:
The goal is to satisfy the following conditions:
Observation:
Action:

Methods

Solve Problems
in Environment

Decide what tool
to use next

Environment

Execute
Tool

Get
Observation

Response

carry_to('rooma', 'ball1', 'roomb', 'rooma', 'left')

Methods

17

Critique/Improve
Code

Generate Code
from Descriptions

Generate Action
Descriptions

Create Tools Solve Problems
in Environment

Optimize Tools

Decide what tool
to use next

Environment

Execute
Tool

Get
Observation

Identify best tool
based on score

Improve best tool
Based on Errors

Experiments & Results

Examples of

tools created

18

Step Accuracy
higher is better

Task Success
Rate (GPT-3.5)
higher is better

Task Success Rate
(GPT- 4) higher is
better

Avg. # of steps to
solve task
(GPT-3.5), lower is
better

Learn Act (with our
modifications)

64.37% 70.0 N/A 4.78

Baseline 1:LearnAct 27.70% 45.0 82.5 9.11

Baseline 2: Voyager NA 2 76.5 NA

Conclusion

- Decomposition of the whole process into multiple steps helped (e.g. first
generating a list of tools, then code)

- Reducing the number of token per LLM Prompt increased the quality of the
LLM response

- Use GPT 3.5 for reasoning tasks and Code Llama [6] for generating code

- Being as precise as possible in the prompt helped (e.g., prompting the LLM
for a structured docstring instead of just a method description)

- Shorter avg. steps to solve shows there is space for domain-specific LLM
agents to work together rather than relying on one generalist model

19

Q&A

20

References

[1] Zhao, H., Ma, C., Wang, G., Su, J., Kong, L., Xu, J., ... & Yang, H. (2024). Empowering Large Language Model Agents
through Action Learning. arXiv preprint arXiv:2402.15809.

[2] Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022). React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629.

[3] Ma, C., Zhang, J., Zhu, Z., Yang, C., Yang, Y., Jin, Y., ... & He, J. (2024). AgentBoard: An Analytical Evaluation Board of
Multi-turn LLM Agents. arXiv preprint arXiv:2401.13178.

[4] Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., ... & Anandkumar, A. (2023). Voyager: An open-ended
embodied agent with large language models. arXiv preprint arXiv:2305.16291.

[5] Silver, T., & Chitnis, R. (2020). PDDLGym: Gym environments from PDDL problems. arXiv preprint arXiv:2002.06432.

[6] Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X. E., ... & Synnaeve, G. (2023). Code llama: Open
foundation models for code. arXiv preprint arXiv:2308.12950.

21

Backup Slides

22

Related Work

- Many attempts have been made to solve RL control problems by exploiting
the code generation and reasoning abilities of LLMs

- Two notable ones that inspired our work are:
1. Voyager (2021):
2. LearnAct (2024):

23

LLM Agents Overview

24

References

[1] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cˆot ́e, Yonatan Bisk, Adam Trischler, and Matthew J. Hausknecht.
Alfworld: Aligning text and embodied environments for interactive learning. CoRR, abs/2010.03768, 2020.

[2] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv preprint arXiv:2305.16291,
2023.

[3] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, Xu
Chen, Yankai Lin, et al. A survey on large language model based autonomous agents. arXiv preprint
arXiv:2308.11432, 2023.

[4] Lilian Weng. LLM powered autonomous agents. https://lilianweng.github.io/ posts/2023-06-23-agent/. Accessed
on: 02/04/2023.

[5] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

25

Problem: Gripper Environment

26

LLM Agent

27

Problem Statement

- How can LLM agents acquire novel skill by combining primitive skills?
- How their “tools” can be broken down into more elementary primitives?
- How these primitives can be combined?
- How to guide an LLM Agent to acquire the appropriate skills for solving a

final task?

- Data Source
- GPT3.5 and GPT4.0 from the Azure OpenAI API as backbone LLMs
- custom reinforcement learning environments such as a grid world
- If successful, more complex environments, such as ALFWorld

28

ReAct Prompting Example

- React prompt to LLM has 4 key components
- Example: https://github.com/smerrillunc/COMP590/blob/main/SimpleGridWorld.ipynb

29

https://github.com/smerrillunc/COMP590/blob/main/SimpleGridWorld.ipynb

LearnAct Skill Learning

30

Evaluation

- Goal: Place blue ball on blue cell and red ball on red cell
- Equip LLM agent with custom skills that are

- Only useful for a part of task
- Need to be further broken down

- For example: “pickup red ball” and “put down blue ball”
- ”locate ball”, ”go to ball”, ”pick up ball”, ”go to cell” and

”put down ball”
- May be able to observe log of substeps
- Some actions may be purposefully corrupted requiring

reformatting of substeps
- Measure Success Rate and reward agent using total

discounted rewards to optimize for solutions in fewer steps.

31

Summary Prompt
You are a robot with a gripper that can pickup and move objects between different rooms. You will be told the locations of the objects, the location of the robot, and whether the gripper is
free or occupied. You will also be told which objects need to be in which room.

Here are the actions in the domain.

move(<robot_loc>,<room1>):
- Description: This action moves the robot from robot_loc to room1.
- Inputs: robot_loc (string): robot's current location, room1 (string): room to move to
- Required World State: Robot is at robot_loc
- Resulting World State: Robot has moved to room1

pick(<obj_name>,<obj_room>,<gripper>):
- Description: This action picks up obj_name in obj_room using it's specified gripper.
- Inputs: obj_name (string): object to pickup, obj_room (string): the current room of obj_name, gripper (string): the gripper to use to pickup obj_name
- Required World State: Robot is in obj_room. obj_name is in obj_room. gripper is free
- Resulting World State: gripper is not free, obj_name is in gripper

drop(<obj_name>,<current_room>,<gripper>):"
- Description: This action drops obj_name currently held in gripper in current_room.
- Inputs: obj_name (string): object to drop, current_room (string): the current room the robot is in, gripper (string): the gripper holding obj_name
- Required World State: Robot is in current_room. obj_name is in gripper. gripper is not free
- Resulting World State: gripper is free, obj_name is in current_room, robot is in current room

Please combine at least two of the above actions into functions composite helper functions. These functions should be useful to move objects between rooms. Please list a description of the
function, the inputs to the function, the required world state to use the funcion, the resulting world state after the function is used and the basic functions used.

32

LLM Summary Prompt Response
1. carry_to(robot_loc, object_name, object_loc, destination_loc, gripper_tool):

- Description: This function moves the robot from robot_loc to object_loc. Then it picks up object_name using gripper_tool, moves from object_loc to destination_loc,
and drops the object_name using gripper_tool.

- Inputs: robot_loc (string): current location of the robot, object_name (string): name of the object to be carried, object_loc (string): current location of object_name,
destination_loc (string): destination to move object_name to, gripper_tool (string): gripper to use to pick up and drop object_name

- Required World State: gripper_tool is free
- Resulting World State: gripper_tool is free, robot is at destination_loc, object_name is at destination_loc
- Basic Functions Used: move, pick, drop

2. move_object(robot_loc, object_name, object_loc, destination_loc, gripper_tool):
- Description: This function moves the robot from robot_loc to object_loc, picks up object_name using gripper_tool, moves from object_loc to destination_loc while

carrying object_name, and drops object_name at the destination_loc from gripper_tool.
- Inputs: robot_loc (string): current location of the robot, object_name (string): name of the object to be moved, object_loc (string): current location of object_name,

destination_loc (string): destination to move object_name to, gripper_tool (string): the left or right gripper to use
- Required World State: gripper_tool is free
- Resulting World State: gripper_tool is free, robot is at destination_loc, object_name is at destination_loc
- Basic Functions Used: move, pick, drop

33

Code Prompt
Assume you have access to the the following functions.

move(<robot_loc>,<room1>):- Description: This action moves the robot from robot_loc to room1.
- Inputs: robot_loc (string): robot's current location, room1 (string): room to move to
- Required World State: Robot is at robot_loc wor
- Resulting World State: Robot has moved to room1

pick(<obj_name>,<obj_room>,<gripper>):- Description: This action picks up obj_name in obj_room using it's specified gripper.
- Inputs: obj_name (string): object to pickup, obj_room (string): the current room of obj_name, gripper (string): the gripper to use to pickup obj_name
- Required World State: Robot is in obj_room. obj_name is in obj_room. gripper is free
- Resulting World State: gripper is not free, obj_name is in gripper

drop(<obj_name>,<current_room>,<gripper>):"- Description: This action drops obj_name currently held in gripper in current_room.
- Inputs: obj_name (string): object to drop, current_room (string): the current room the robot is in, gripper (string): the gripper holding obj_name
- Required World State: Robot is in current_room. obj_name is in gripper. gripper is not free
- Resulting World State: gripper is free, obj_name is in current_room, robot is in current room

You will be given a function description and your task is to write that function. And wrap all executable code with ```python ```. Do not write any unecessary functions.

Example 1:
move_pickup_drop(robot_loc, object_loc, object_name, destination_loc, gripper):
 - Description: This function moves the robot from robot_loc to object_loc, picks up object_name using gripper, moves from object_loc to destination_loc, and drops object_name using its gripper.
- Inputs: robot_loc (string): current location of robot, object_loc ('string'): current location of object, object_name (string): object to be moved, destination_loc (string): destination to move object to, gripper (string): gripper to use to pickup and drop object
- Required World State: Robot is at robot_loc, object_name is in object_loc, gripper is free
- Resulting World State: Robot is at destination_loc, object_name is in destination_loc, gripper is free
- Basic Functions Used: move, pick, drop

You will respond:
 ```python 
def move_pickup_drop(robot_loc, object_loc, object_name, destination_loc, gripper):
    move(robot_loc, object_loc)
    pick(object_name, object_loc, gripper)
    move(object_loc, destination_loc)
    drop(object_name, destination_loc, gripper)
```
 Now please implement the function carry_to(robot_loc, object_name, object_loc, destination_loc, gripper_tool), wrap all executable code with ```python ```.
 - Description: carry_to(robot_loc, object_name, object_loc, destination_loc, gripper_tool): - Description: This function moves the robot from robot_loc to object_loc. Then it picks up object_name using gripper_tool, moves from object_loc to destination_loc, and drops the
object_name using gripper_tool.
 - Inputs: robot_loc (string): current location of the robot, object_name (string): name of the object to be carried, object_loc (string): current location of object_name, destination_loc (string): destination to move object_name to, gripper_tool (string): gripper to use to pick up
and drop object_name
 - Required World State: gripper_tool is free
 - Resulting World State: gripper_tool is free, robot is at destination_loc, object_name is at destination_loc
 - Basic Functions Used: move, pick, drop.

34

Error Correction Prompt
Please read through all the instructions carefully and analyze the produced code for any errors.
You are not allowed to ask any questions or make assumptions on global variables.
If there are errors in the code please correct them, otherwise return the same code.
If the required task is not solvable you should say 'Impossible.'
If there are errors in the code you should say 'ERROR' then provide a correction.

35

36

LLM Action Query
You are a robot with a gripper that can move objects between different rooms. Your name is Robby.
There are actions defined in this domain:
move(<robot_loc>,<room1>):
- Description: This action moves the robot from robot_loc to room1.
- Inputs: robot_loc (string): robot's current location, room1 (string): room to move to
- Required World State: Robot is at robot_loc
- Resulting World State: Robot has moved to room1

pick(<obj_name>,<obj_room>,<gripper>):
- Description: This action picks up obj_name in obj_room using it's specified gripper.
- Inputs: obj_name (string): object to pickup, obj_room (string): the current room of obj_name, gripper (string): the gripper to use to pickup obj_name
- Required World State: Robot is in obj_room. obj_name is in obj_room. gripper is free
- Resulting World State: gripper is not free, obj_name is in gripper

drop(<obj_name>,<current_room>,<gripper>):"
- Description: This action drops obj_name currently held in gripper in current_room.
- Inputs: obj_name (string): object to drop, current_room (string): the current room the robot is in, gripper (string): the gripper holding obj_name
- Required World State: Robot is in current_room. obj_name is in gripper. gripper is not free
- Resulting World State: gripper is free, obj_name is in current_room, robot is in current room

carry_to(robot_loc, object_name, object_loc, destination_loc, gripper_tool):
- Description: This function moves the robot from robot_loc to object_loc. Then it picks up object_name using gripper_tool, moves from object_loc to destination_loc, and drops the object_name using gripper_tool.\
- Inputs: robot_loc (string): current location of the robot, object_name (string): name of the object to be carried, object_loc (string): current location of object_name, destination_loc (string): destination to move object_name to, gripper_tool (string): gripper to use to pick up and drop object_name
- Required World State: gripper_tool is free
- Resulting World State: gripper_tool is free, robot is at destination_loc, object_name is at destination_loc
- Basic Functions Used: move, pick, drop

move_object(robot_loc, object_name, object_loc, destination_loc, gripper_tool):
- Description: This function moves the robot from robot_loc to object_loc, picks up object_name using gripper_tool, moves from object_loc to destination_loc while carrying object_name, and drops object_name at the destination_loc from gripper_tool.
- Inputs: robot_loc (string): current location of the robot, object_name (string): name of the object to be moved, object_loc (string): current location of object_name, destination_loc (string): destination to move object_name to, gripper_tool (string): the left or right gripper to use
- Required World State: gripper_tool is free
- Resulting World State: gripper_tool is free, robot is at destination_loc, object_name is at destination_loc
- Basic Functions Used: move, pick, drop

Here are examples:
The goal is to satisfy the following conditions: ball1 is at rooma, ball2 is at roomb.
Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at rooma. Left is a gripper. Left is free. Right is a gripper. Right is free. Robby is at rooma. Room rooma Room roomb.
Action: move_object(rooma, Ball2, rooma, roomb, 'left')
Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is in left. Left is a gripper. Ball2 is in left. Right is a gripper. Right is free. Robby is at rooma. Room rooma Room roomb.

The goal is to satisfy the following conditions: ball1 is at roomb. , ball2 is at roomb. , ball3 is at roomb.

Observation: Ball1 is a ball. Ball1 is at rooma. Ball2 is a ball. Ball2 is at rooma. Ball3 is a ball. Ball3 is at rooma. Left is a gripper. Left is free. Right is a gripper. Right is free. Robby is at rooma. Room rooma Room roomb
Action: pick('ball1','rooma','right')
Observation: Ball1 is a ball. Ball1 is carrying right. Ball2 is a ball. Ball2 is at rooma. Ball3 is a ball. Ball3 is at rooma. Left is a gripper. Left is free. Right is a gripper. Robby is at rooma. Room rooma Room roomb
Action: pick('ball2','rooma','left')
Observation: Ball1 is a ball. Ball1 is carrying right. Ball2 is a ball. Ball2 is carrying left. Ball3 is a ball. Ball3 is at rooma. Left is a gripper. Right is a gripper. Robby is at rooma. Room rooma Room roomb
Action: move('rooma','roomb')
Observation: Ball1 is a ball. Ball1 is carrying right. Ball2 is a ball. Ball2 is carrying left. Ball3 is a ball. Ball3 is at rooma. Left is a gripper. Right is a gripper. Robby is at roomb. Room rooma Room roomb
Action: drop('ball1','rooma','right')
Observation: The action is not valid and therefore takes no effect. Please remember to satisfy the restriction of actions.
Action: drop('ball1','roomb','right')
Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is carrying left. Ball3 is a ball. Ball3 is at rooma. Left is a gripper. Right is a gripper. Right is free. Robby is at roomb. Room rooma Room roomb
Action: drop('ball2','roomb','left')
Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at roomb. Ball3 is a ball. Ball3 is at rooma. Left is a gripper. Left is free. Right is a gripper. Right is free. Robby is at roomb. Room rooma Room roomb
Action: move('roomb','rooma')
Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at roomb. Ball3 is a ball. Ball3 is at rooma.Left is a gripper. Left is free. Right is a gripper. Right is free. Robby is at rooma. Room rooma Room roomb
Action: pick('ball3','rooma','right')
Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at roomb. Ball3 is a ball. Ball3 is carrying right. Left is a gripper. Left is free. Right is a gripper. Robby is at rooma. Room rooma Room roomb
Action: move('rooma','roomb')
Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at roomb. Ball3 is a ball. Ball3 is carrying right. Left is a gripper. Left is free. Right is a gripper. Robby is at roomb. Room rooma Room roomb
Action: drop('ball3','rooms','right')
Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at roomb. Ball3 is a ball. Ball3 is at roomb. Left is a gripper. Left is free. Right is a gripper. Right is free. Robby is at roomb. Room rooma Room roomb. The task is completed.

You should perform actions to accomplish the goal: The goal is to satisfy the following conditions: ball1 is at rooma. , ball2 is at rooma. , ball3 is at roomb. , ball4 is at roomb. , ball5 is at rooma. , ball6 is at rooma.
Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at roomb. Ball3 is a ball. Ball3 is at rooma. Ball4 is a ball. Ball4 is at rooma. Ball5 is a ball. Ball5 is at roomb. Ball6 is a ball. Ball6 is at roomb. Left is a gripper. Left is free. Right is a gripper. Right is free. Robby is at rooma. Room rooma Room roomb
Action:

37

38

Methods

39

Critique/Improve
Code

Generate Code from
Descriptions

Generate Action
Descriptions

Create Tools Solve Problems
in Environment

Optimize Tools

Decide what tool
to use next

Environment

Execute
Tool

Get
Observation

Identify best tool
based on score

Improve best tool
Based on Errors

GPT-3.5

Code Llama

Actions: move(roomA, roomB), pickup(obj, room, gripper),
drop(obj, room, gripper)
Initial State: Ball 1, 2, 3, 5 are in Room A, Ball 4, 6 are in
Room B, Robot is in Room A, Right & Left Gripper are free
Goal State: Ball 4, 6 are in Room A

40

def move_objects(room1, room2, objects, gripper):
 for obj objects:
 pickup(obj, room1, gripper)
 move(room1, room2)
 drop(obj, room2, gripper)
 move(room2, room1)

Description: This actions moves all objects from one
room to another using a gripper.
Input: room1 (string), room2 (string), objects (list): list of
objects to move from room1 to room2, gripper (string)
Required World State: all objects must be in room1,
the robot must be in room1, gripper must be free
Resulting World State: all objects are now in room2,
the robot is in room1

Output

Input

