Skill-Acquisition In
LLM Agents

Isai Garcia-Baza, Scott Merrill, Titus Spielvogel

Problem

Problem Statement:

- Given an agent that interacts with an environment to solve a set of
problems using a set of primitive actions

- Learn new actions which are a composition of primitive actions that are
helpful in solving the set of problems

Key Idea: Equip the agent with the ability to prompt an LLM to learn new
actions and decide which actions to take next

Input: Environment description, environment start state and goal state, set of
problems, primitive actions, few shot examples for LLM Prompts

Output: A set of learned actions (their python code and their description)

Gripper Environment

2 rooms, 6 balls, and a robot with 2 grippers

3 possible actions:
move(roomA, roomB),
pickup(obj, room, gripper)
drop(obj, room, gripper)

Dataset contains 20 problems each problem is
described by a initial state and goal state of the
environment (e.g. Ball 1 is in RoomA...)

3 problems for training, 17 problems for testing

Input/Output Example - Gripper

ya AN
s AN

/Input N

Actions: move(roomA, roomB), pickup(obj, room, gripper), drop(obj, room, gripper)

Initial State: Ball 1, 2, 3, 5 are in Room A, Ball 4, 6 are in Room B, Robot is in Room A, Right and Left
Gripper are free

K(;oal State: Ball 4, 6 are in Room A

/
/Output \

def move_objects(room1, room2, objects, gripper): Description:.This aqtions moves all objects from one room
for obi obiects: to another using a gripper.
) O] : Input: room1 (string), room2 (string), objects (list): list of

pickup(obj, room1, gripper) objects to move from room1 to room2, gripper (string)
move(room1, room2) Required World State: all objects must be in room1, the
drop(obj, room2, gripper) robot must be in room1, gripper must be free

Resulting World State: all objects are now in room2, the

K move(room2, room1) robot is in room1 /

Solution: Modifications to LearnAct

- Modification motivated by the Voyager [4] and LearnAct Paper [1]

Hypothesis 1: While GPT-3.5 can handle 16k-tokens, shorter prompts may be better
=> Shorten prompts and made them more precise (docstrings, understand state of the
world, etc.)

Hypothesis 2: LLM models fine tuned on python code are better at coding, while GPT-3.5 is
better for reasoning
-> Differentiated between code generation and reasoning tasks

Hypothesis 3: Using critique methods from LLM literature, we can prompt LLM to
iteratively improve it's code
=> Add a critic LLM prompt to correct and improve original code generation result

Methods
/ Create Tools \

Generate Action
Descriptions

Generate Code
from Descriptions

vt

Critique/lmprove
Code

. !

/Solve Problems\

in Environment

Decide what tool
to use next

Get Execute
Observation Tool

[Environment J

o !

B GPT-35

Code Llama

/Optimize Tools\

Identify best tool
based on score

Improve best tool
Based on Errors

o !

/ Create Tools \

Generate Action 1
Descriptions @

!

Generate Code
from Descrlpt|ons@

v |

/Solve Problems\

in Environment

Decide what tool
to use next

Get Execute
Observation Tool

[Environment J

Critique/lmprove
Code @

_ /

_ /

o

Optimize Tools

[|dentify best tool]

based on score &

Improve best tool
Based on Errors

/

&5 Modified
B GPT-35
Code Booga

Methods

/ Create Tools \

Generate Action -
Descriptions

}

Generate Code
from Descriptions

v |

Critique/lmprove
Code

Prompt

_ %

You are a robot with a gripper that can pickup and
move objects between different rooms.

Here are the actions in the domain:
<List of Tools and their Docstring>

Please combine at least two of the above actions into
functions composite helper functions.

Please list a description, the inputs, the required
and resulting world state.

Methods
/ Create Tools \

Generate Action)
Descriptions -~

|

Generate Code
from Descriptions

v |

Critique/lmprove
Code

Response

o %

carry_to(robot_loc, object_name, object_loc,
destination_loc, gripper_tool):

<Description>
<Inputs>

Required World State,
Resulting World State:
Basic Functions Used

move_object(...):

Methods

/ Create Tools \

Generate Action
Descriptions

}

Generate Code /’
from Descriptions

v |

Critique/lmprove
Code

Prompt

_ %

Assume you have access to the the following functions:
<List of Tools and their Docstring>

You will be given a function description and your task
is to write that function.

" Example 1:

<one shot example>

Now please implement the function:

carry_to(robot_loc, object_name, object_loc,
destination_loc, gripper_tool)

<Docstring of carry_to>

Methods

/ Create Tools \

Generate Action
Descriptions

| ,

/
/

Generate Code |,
from Descriptions

v |

Critique/lmprove
Code

Response

_ %

def carry_to(robot_loc, object_name, object_loc,
destination_loc, gripper_tool):

move(robot_loc, object_loc)

pick(object_name, object_loc, gripper_tool)
move(object_loc, destination_loc)
drop(object_name, destination_loc, gripper_tool)

Methods
/ Create Tools \

Generate Action
Descriptions

|

Generate Code
from Descriptions

v |

Critique/Improve | »”
Code

Prompt

o %

Please read through all the instructions carefully
and analyze the produced code for any errors.

If there are errors in the code please correct them,
otherwise return the same code.

<python code>

Methods
/ Create Tools \

Generate Action
Descriptions

Generate Code
from Descriptions

v |

Critique/lmprove e
Code

o %

4

Response

The provided code is correct and does not
contain any errors.

Methods
/ Create Tools \

Generate Action
Descriptions

Generate Code
from Descriptions

vt

Critique/lmprove
Code

. !

/Solve Problems\

in Environment

Decide what tool
to use next

Get Execute
Observation Tool

[Environment J

o !

/Optimize Tools\

Identify best tool
based on score

Improve best tool
Based on Errors

N >

Methods Prompt

//’7 *\\\ You are a robot with a gripper that can move objects
Solve Problems between different rooms.

in Environment There are actions defined in this domain:

<List of primitive Tools and their Docstring>
- carry_to(...)
- <Docstring for carry_to>
move_object(...)

Decide what tool -1

to use next ;
<Docstring for carry_to>
Get Execute Here are examples:
Observation Tool <few shot examples>

_ You should perform actions to accomplish the goal:
Environment The goal is to satisfy the following conditions:

Observation:
\\\‘ 4/// Action:

Methods

/Solve Problems\

in Environment

[Decide what tool

to use next
Get Execute
Observation ool

[Environment J

P
-

o

/

-

-

-

-
-

Response

-

carry_to('rooma',

'ball1',

"roomb',

'rooma',

left')

Methods
/ Create Tools \

Generate Action
Descriptions

Generate Code
from Descriptions

vt

Critique/lmprove
Code

. !

/Solve Problems\

in Environment

Decide what tool
to use next

Get Execute
Observation Tool

[Environment J

o !

/Optimize Tools\

Identify best tool
based on score

Improve best tool
Based on Errors

N s

Experiments & Results

Learn Act (with our
modifications)

Baseline 1:LearnAct

Baseline 2: Voyager

Examples of

tools created

Step Accuracy | Task Success Task Success Rate

higher is better | Rate (GPT-3.5) (GPT- 4) higher is
higher is better better

64.37% 70.0 N/A

27.70% 45.0 82.5

NA 2 76.5

def move_object(robot_loc, object_name
gripper_tool):
move(robot_loc, object_loc)
pick(object_name, object_loc, gripper_tool)
move(object_loc, destination_loc)
drop(object_name, destination_loc, gripper_tool)

carry_to(robot_loc, object_name, object_loc, destination_
move(robot_loc, object_loc)

pick(object_name, object_loc, gripper_tool)
move(object_loc, destination_loc)

drop(object_name, destination_loc, gripper_tool)

Avg. # of steps to
solve task
(GPT-3.5), lower is
better

4,78

9.1

NA

loc, gripper_tool):

18

Conclusion

- Decomposition of the whole process into multiple steps helped (e.g. first
generating a list of tools, then code)

- Reducing the number of token per LLM Prompt increased the quality of the
LLM response

- Use GPT 3.5 for reasoning tasks and Code Llama [6] for generating code

- Being as precise as possible in the prompt helped (e.g., prompting the LLM
for a structured docstring instead of just a method description)

- Shorter avg. steps to solve shows there is space for domain-specific LLM
agents to work together rather than relying on one generalist model

19

Q&A

References

[1] Zhao, H., Ma, C., Wang, G., Su, J., Kong, L., Xu, J., ... & Yang, H. (2024). Empowering Large Language Model Agents
through Action Learning. arXiv preprint arXiv:2402.15809.

[2] Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022). React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629.

[3] Ma, C., Zhang, J., Zhu, Z., Yang, C., Yang, Y., Jin, Y., ... & He, J. (2024). AgentBoard: An Analytical Evaluation Board of
Multi-turn LLM Agents. arXiv preprint arXiv:2401.13178.

[4] Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., ... & Anandkumar, A. (2023). Voyager: An open-ended
embodied agent with large language models. arXiv preprint arXiv:2305.16291.

[5] Silver, T., & Chitnis, R. (2020). PDDLGym: Gym environments from PDDL problems. arXiv preprint arXiv:2002.06432.

[6] Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I, Tan, X. E., ... & Synnaeve, G. (2023). Code llama: Open
foundation models for code. arXiv preprint arXiv:2308.12950.

21

Backup Slides

Related Work

- Many attempts have been made to solve RL control problems by exploiting
the code generation and reasoning abilities of LLMs
- Two notable ones that inspired our work are:
1. Voyager (2021):
2. LearnAct (2024):

23

LLM Agents Overview

(Observation O¢

-~

= State St

Environment

&

Memory My
What has my previous Language
actions done? == Model
How does the world Generation
evolve? /
> l
[Goal 9 Action O¢

J

* State 41

[Instruction]: You are an agent in a virtual science school environment, tasked to
interact with various elements. Here are commands that you can use: open, close,

look around ...
[Goal]: You should perform actions to accomplish the goal: boil some water.

User

~

[[Memory]:

Observation: This room is called the workshop. In it, you see: the agent, a table, a door to
the hallway...

Action: go to kitchen

Observation: You move to the kitchen.

Action: open cupboard

(Observation: The cupboard is open. There is a mug, a thermometer, and a cloth.)

@ [Acﬁon: pickup mug from the cupboard]

|®

[Observation: You move the mug to the inventory.

24

References

[1] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C"ot'e, Yonatan Bisk, Adam Trischler, and Matthew J. Hausknecht.
Alfworld: Aligning text and embodied environments for interactive learning. CoRR, abs/2010.03768, 2020.

[2] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv preprint arXiv:2305.16291,
2023.

[3] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, Xu
Chen, Yankai Lin, et al. A survey on large language model based autonomous agents. arXiv preprint
arXiv:2308.11432, 2023.

[4] Lilian Weng. LLM powered autonomous agents. https://lilianweng.github.io/ posts/2023-06-23-agent/. Accessed
on: 02/04/2023.

[5] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

25

Bob Prompt
Alice Prompt

You are Alice,

pack grocery with Bob...

[Task Context]

- Previously ... [History]
- You can ... [Capability]
- Respond ...

[Dialog Instruction]

- You see ...

[Env. Observation]

Your response:

Problem: Gripper Environment

Multi-Agent Dialog
for Collaboration §3.1

Iam Alice, I have picked up
banana. I can [proposal]

I am Bob, I have the bread...
Let’s [proposal]

Sounds good, let’s proceed:
[plan summary]

Plan Feedback

<@— [Collision]: at step ... [IK]: ...

LLM-Generated
Subtask Plan §3.2

Alice [subtask] [task space waypoint]

Bob [subtask] [task space waypoint]

P

Motion-Planning in
Robot Joint Space §3.3

Alice [joint space trajectory]

Bob [joint space trajectory]

Execute

26

LLM Agent

[

Memory }

[

Planning N

CLky

Skills J

:

Tool
Use

A7 A

LLM Agent

N
| g

[Environmentj

27

Problem Statement

- How can LLM agents acquire novel skill by combining primitive skills?
- How their “tools” can be broken down into more elementary primitives?
- How these primitives can be combined?
- How to guide an LLM Agent to acquire the appropriate skills for solving a
final task?

- Data Source
- GPT3.5 and GPT4.0 from the Azure OpenAl API as backbone LLMs
- custom reinforcement learning environments such as a grid world
- If successful, more complex environments, such as ALFWorld

28

ReAct Prompting Example

React prompt to LLM has 4 key components
Example: https://github.com/smerrillunc/COMP590/blob/main/SimpleGridWorld.ipynb

Instruction ReAct \Steps

|Solve a question answering task]w1th 1nterleav1ng Thought, Action, Observatlon
steps. o

Reason«Thought can reason about the current 51tuat10n and Action can be three types:
(l)fSearchIentltyﬂ . which searches the exact entity on Wikipedia and returns the
first paragraph if it exists.

If not, it will return some similar entities to search.

/\(:ti()r1E;*’TITTLookup[keywordlL which returns the next sentence containing keyword in the

‘\tu[!ent passage.
(3) |Finish[answer]], which returns the answer and finishes the task.

29

https://github.com/smerrillunc/COMP590/blob/main/SimpleGridWorld.ipynb

LearnAct Skill Learning

Assess Revised Action Space

"

Whirain Action ¢

Observation Oy

v

Sample Best A;, T,

l Results

Find Failed Case

—_——b -

J -

Revised Samples of
Action Space and Policy

k k
{A: s WA }kfl. K

Action Learner %

Write
Notes for
Functions

Function
Updating

f

Trajectory & Error Feedback 1.7 (1.1

Action Space A,

Figure 2: During the learning stage, action usage by agent
and action optimization are repeatedly executed. The im-

def pour_shot_to_shaker(shot, ingredient,

shaker, hand1, level1, level2):
pour_shot_to_clean_shaker(shot,

ingredient, shaker, hand1, level1, level2)
clean_shot(shot, ingredient, hand1, hand2)
leave(hand1, shot)

Instruction:
You can take following actions:

pour_shot_to_shaker(shot, ingredient, shaker,
hand1, levell, level2): This action pour the
ingredient......

a: fill_shot('shot1','ingredient3’, right',"left','dispenser3')

o: Shot1 contains ingredient3.

a: pour_shot_to_shaker(‘shot1’, 'ingredient3’, 'shaker1’, right’, ‘11’, '12")

o: The action is not valid.

—

Function Updating

Write Notes for Functions
or

def pour_shot_to_shaker(shot, ingredient,
shaker, hand1, levell, level2):
if level1 =="10":
pour_shot_to_clean_shaker(shot,
ingredient, shaker, hand1, level1, level2)
else:
pour_shot_to_used_shaker(shot,
ingredient, shaker, hand1, level1, level2)
clean_shot(shot, ingredient, hand1, hand2)
leave(hand1, shot)

Instruction:
You can take following actions:

pour_shot_to_shaker(shot, ingredient, shaker,
hand1, level1, level2): This action pour the
ingredient...... Note that this action can only be
used to pour ingredient into clean shaker that
contains no other ingredients.

30

Evaluation

Goal: Place blue ball on blue cell and red ball on red cell
Equip LLM agent with custom skills that are
- Only useful for a part of task
- Need to be further broken down
For example: “pickup red ball” and “put down blue ball”
- "locate ball”, "go to ball”, "pick up ball”, "go to cell” and
"put down ball”
May be able to observe log of substeps
Some actions may be purposefully corrupted requiring
reformatting of substeps
Measure Success Rate and reward agent using total

discounted rewards to optimize for solutions in fewer steps.

+1

Environment

(:!f,

A

LLM Agent

31

Summary Prompt

You are a robot with a gripper that can pickup and move objects between different rooms. You will be told the locations of the objects, the location of the robot, and whether the gripper is
free or occupied. You will also be told which objects need to be in which room.

Here are the actions in the domain.

move(<robot_loc>,<room1>):
- Description: This action moves the robot from robot_loc to room1.
- Inputs: robot_loc (string): robot's current location, room1 (string): room to move to
- Required World State: Robot is at robot_loc
- Resulting World State: Robot has moved to room1

pick(<obj_name>,<obj_room>,<gripper>):
- Description: This action picks up obj_name in obj_room using it's specified gripper.
- Inputs: obj_name (string): object to pickup, obj_room (string): the current room of obj_name, gripper (string): the gripper to use to pickup obj_name
- Required World State: Robot is in obj_room. obj_name is in obj_room. gripper is free
- Resulting World State: gripper is not free, obj_name is in gripper

drop(<obj_name>,<current_room>,<gripper>):"
- Description: This action drops obj_name currently held in gripper in current_room.
- Inputs: obj_name (string): object to drop, current_room (string): the current room the robot is in, gripper (string): the gripper holding obj_name
- Required World State: Robot is in current_room. obj_name is in gripper. gripper is not free
- Resulting World State: gripper is free, obj_name is in current_room, robot is in current room

Please combine at least two of the above actions into functions composite helper functions. These functions should be useful to move objects between rooms. Please list a description of the
function, the inputs to the function, the required world state to use the funcion, the resulting world state after the function is used and the basic functions used.

32

LLM Summary Prompt Response

1. carry_to(robot_loc, object_name, object_loc, destination_loc, gripper_tool):

Description: This function moves the robot from robot_loc to object_loc. Then it picks up object_name using gripper_tool, moves from object_loc to destination_loc,
and drops the object_name using gripper_tool.

Inputs: robot_loc (string): current location of the robot, object_name (string): name of the object to be carried, object_loc (string): current location of object_name,
destination_loc (string): destination to move object_name to, gripper_tool (string): gripper to use to pick up and drop object_name

Required World State: gripper_tool is free

Resulting World State: gripper_tool is free, robot is at destination_loc, object_name is at destination_loc

Basic Functions Used: move, pick, drop

2. move_object(robot_loc, object_name, object_loc, destination_loc, gripper_tool):

Description: This function moves the robot from robot_loc to object_loc, picks up object_name using gripper_tool, moves from object_loc to destination_loc while
carrying object_name, and drops object_name at the destination_loc from gripper_tool.

Inputs: robot_loc (string): current location of the robot, object_name (string): name of the object to be moved, object_loc (string): current location of object_name,
destination_loc (string): destination to move object_name to, gripper_tool (string): the left or right gripper to use

Required World State: gripper_tool is free

Resulting World State: gripper_tool is free, robot is at destination_loc, object_name is at destination_loc

Basic Functions Used: move, pick, drop

33

Code Prompt

Assume you have access to the the following functions.

move(<robot_loc>,<room1>):- Description: This action moves the robot from robot_loc to room1.
- Inputs: robot_loc (string): robot's current location, room1 (string): room to move to

- Required World State: Robot is at robot_loc wor

- Resulting World State: Robot has moved to room1

pick(<obj_name>,<obj_room>,<gripper>):- Description: This action picks up obj_name in obj_room using it's specified gripper.

- Inputs: obj_name (string): object to pickup, obj_room (string): the current room of obj_name, gripper (string): the gripper to use to pickup obj_name
- Required World State: Robot is in obj_room. obj_name is in obj_room. gripper is free

- Resulting World State: gripper is not free, obj_name is in gripper

drop(<obj_name>,<current_room>,<gripper>):"- Description: This action drops obj_name currently held in gripper in current_room.

- Inputs: obj_name (string): object to drop, current_room (string): the current room the robot is in, gripper (string): the gripper holding obj_name
- Required World State: Robot is in current_room. obj_name is in gripper. gripper is not free

- Resulting World State: gripper is free, obj_name is in current_room, robot is in current room

You will be given a function description and your task is to write that function. And wrap all executable code with ***python ***. Do not write any unecessary functions.

Example 1:

move_pickup_drop(robot_loc, object_loc, object_name, destination_loc, gripper):

- Description: This function moves the robot from robot_loc to object_loc, picks up object_name using gripper, moves from object_loc to destination_loc, and drops object_name using its gripper.

- Inputs: robot_loc (string): current location of robot, object_loc ('string'): current location of object, object_name (string): object to be moved, destination_loc (string): destination to move object to, gripper (string): gripper to use to pickup and drop object
- Required World State: Robot is at robot_loc, object_name is in object_loc, gripper is free

- Resulting World State: Robot is at destination_loc, object_name is in destination_loc, gripper is free

- Basic Functions Used: move, pick, drop

You will respond:
“python
def move_pickup_drop(robot_loc, object_loc, object_name, destination_loc, gripper):
move(robot_loc, object_loc)
pick(object_name, object_loc, gripper)
move(object_loc, destination_loc)
drop(object_name, destination_loc, gripper)

Now please implement the function carry_to(robot_loc, object_name, object_loc, destination_loc, gripper_tool), wrap all executable code with ***python ™.

- Description: carry_to(robot_loc, object_name, object_loc, destination_loc, gripper_tool): - Description: This function moves the robot from robot_loc to object_loc. Then it picks up object_name using gripper_tool, moves from object_loc to destination_loc, and drops the
object_name using gripper_tool.

- Inputs: robot_loc (string): current location of the robot, object_name (string): name of the object to be carried, object_loc (string): current location of object_name, destination_loc (string): destination to move object_name to, gripper_tool (string): gripper to use to pick up
and drop object_name

- Required World State: gripper_tool is free

- Resulting World State: gripper_tool is free, robot is at destination_loc, object_name is at destination_loc

- Basic Functions Used: move, pick, drop.

Error Correction Prompt

Please read through all the instructions carefully and analyze the produced code for any errors.

You are not allowed to ask any questions or make assumptions on global variables.
If there are errors in the code please correct them, otherwise return the same code.
If the required task is not solvable you should say 'Impossible.’

If there are errors in the code you should say 'ERROR' then provide a correction.

35

36

LLM Action Query

You are a robot with a gripper that can move objects between different rooms. Your name is Robby.
There are actions defined in this domain:

move(<robot_loc>,<room1>):

- Description: This action moves the robot from robot_loc to room

- Inputs: robot_loc (string): robot's current location, room1 (string): room to move to

- Required World State: Robot is at robot_loc

- Resulting World State: Robot has moved to room1

pick(<obj_name>,<obj_room>,<gripper>):

- Description: This action picks up obj_name in obj_room using it's specified gripper.

- Inputs: obj_name (string): object to pickup, obj_room (string): the current room of obj_name, gripper (string): the gripper to use to pickup obj_name
- Required World State: Robot s in obj_room. obj_name s in obj_room. gripper is free

- Resulting World State: gripper is not free, obj_name is in gripper

drop(<obj_name>,<current_room>,<gripper>):"
- Description: This action drops obj_name currently held in gripper in current_room.

- Inputs: obj_name (string): object to drop, current_room (string): the current room the robot is i, gripper (string): the gripper holding obj_name
- Required World State: Robot is in current_room. obj_name is in gripper. gripper is not free

- Resulting World State: gripper is free, obj_name is in current_room, robot is in current room

carry_to(robot_loc, object_name, object_loc, destination_loc, gripper_tool):
- Description: This function moves the robot from robot_loc to object_loc. Then it picks up object_name using gripper_tool, moves from object_loc to destination_loc, and drops the object_name using gripper_tool.\

- Inputs: robot_loc (string): current location of the robot, object_name (string): name of the object to be carried, object_loc (string): current location of object_name, destination_loc (string): destination to move object_name to, gripper_tool (string): gripper to use to pick up and drop object_name
- Required World State: gripper_tool is free

- Resulting World State: gripper_tool is free, robot is at destination_loc, object_name is at destination_loc

- Basic Functions Used: move, pick, drop

move_object(robot_loc, object_name, object_loc, destination_loc, gripper_tool):
- Description: This function moves the robot from robot_loc to object_loc, picks up object_name using gripper_tool, moves from object_loc to destination_loc while carrying object_name, and drops object_name at the destination_loc from gripper_tool.

- Inputs: robot_loc (string): current location of the robot, object_name (string): name of the object to be moved, object_loc (string): current location of object_name, destination_loc (string): destination to move object_name to, gripper_tool (string): the left or right gripper to use
- Required World State: gripper_tool is free

- Resulting World State: gripper_tool is free, robot is at destination_loc, object_name is at destination_loc

- Basic Functions Used: move, pick, drop

Here are examples:
The goal is to satisfy the following conditions: ball1 is at rooma, ball2 is at roomb.

Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at rooma. Left is a gripper. Left is free. Right is a gripper. Right s free. Robby is at rooma. Room rooma Room roomb.
Action: move_object(rooma, Ball2, rooma, roomb, 'left)

Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is in left. Left is a gripper. Ball2 is in left. Right is a gripper. Right is free. Robby is at rooma. Room rooma Room roomb.

The goal is to satisfy the following conditions: ball1 is at roomb. , ball2 is at roomb. , ball3 is at roomb.

Observation: Ball1 is a ball. Ball1 is at rooma. Ball2 is a ball. Ball2 is at rooma. Ball3 is a ball. Ball3 is at rooma. Left is a gripper. Left is free. Right is a gripper. Right is free. Robby is at rooma. Room rooma Room roomb
Action: pick('ball1'rooma’,right’)

Observation: Ball1 is a ball. Ball1 is carrying right. Ball2 is a ball. Ball2 is at rooma. Ball3 is a ball. Ball3 is at rooma. Left s a gripper. Left s free. Right is a gripper. Robby is at rooma. Room rooma Room roomb

Action: pick('ball2' rooma’,left)

Observation: Ball1 is a ball. Ball1 is carrying right. Ball2 is a ball. Ball2 is carrying left. Ball3 is a ball. Ball3 is at rooma. Left is a gripper. Right is a gripper. Robby is at rooma. Room rooma Room roomb

Action: move('rooma’,‘roomb’)

Observation: Ball1 is a ball. Ball1 s carrying right. Ball2 is a ball. Ball2 is carrying left. Ball3 is a ball. Ball3 is at rooma. Left is a gripper. Right is a gripper. Robby is at roomb. Room rooma Room roomb

Action: drop('ball 1" rooma',right’)

Observation: The action is not valid and therefore takes no effect. Please remember to satisfy the restriction of actions.

Action: drop('ball 1", roomb", right’)

Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is carrying left. Ball3 is a ball. Ball3 is at rooma. Leftis a gripper. Right s a gripper. Right is free. Robby is at roomb. Room rooma Room roomb

Action: drop('ball2' roomb',left’)

Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at roomb. Ball3 is a ball. Ball3 is at rooma. Left is a gripper. Left is free. Right is a gripper. Right is free. Robby is at roomb. Room rooma Room roomb
Action: move('roomb',‘rooma)

Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at roomb. Ball3 is a ball. Ball3 is at rooma.Left is a gripper. Left is free. Right is a gripper. Right is free. Robby is at rooma. Room rooma Room roomb
Action: pick('ball3' rooma’,right’)

Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at roomb. Ball3 is a ball. Ball3 is carrying right. Leftis a gripper. Left s free. Right is a gripper. Robby is at rooma. Room rooma Room roomb

Action: move('rooma’,‘roomb’)

Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at roomb. Ball3 is a ball. Ball3 is carrying right. Leftis a gripper. Left s free. Right is a gripper. Robby is at roomb. Room rooma Room roomb

Action: drop('ball3' rooms',right’)

Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at roomb. Ball3 is a ball. Ball3 is at roomb. Left is a gripper. Left s free. Right is a gripper. Right s free. Robby is at roomb. Room rooma Room roomb. The task is completed.

YYou should perform actions to accomplish the goal: The goal is to satisfy the following conditions: ball1 is at rooma. , ball2 is at rooma. , ball3 is at roomb. , ball4 is at roomb. , ball5 is at rooma. , ball6 is at rooma.

Observation: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 is at roomb. Ball3 is a ball. Ball3 is at rooma. Ball4 is a ball. Ball4 is at rooma. Ball5 is a ball. Ball5 is at roomb. Ball6 is a ball. Ball6 is at roomb. Leftis a gripper. Left is free. Right is a gripper. Rightis free. Robby is at rooma. Room rooma Room roomb

Action:

37

Codex
GPT3.5
GPT 4 (reported)
Palm-Coder
StarCoder Python
StarCoder (prompted)
Llama 2 (70B)
7B
13B
Code Llama
34B
70B
78
13B
Code Llama - Instruct
34B
70B
7B
13B
Code Llama - Python
34B
70B

HumanEval (pass@1)

335

481

67.0

36.0

33.6

40.8

30.5

335

36.0

48.8

53.0

34.8

427

415

67.8

38.4

433

53.7

57.3

Accuracy, higher is better

MBPP (pass@1)

47.0

52.7

49.5

45.4

41.4

47.0

55.0

62.4

44.4

49.4

57.0

62.2

476

49.0

56.2

65.6

Multilingual Human
Eval (pass@1)

261

253

24.4

26.3

30.6

36.4

453

25.8

32.0

361

459

275

315

351

45.0

38

Methods
/ Create Tools \

Generate Action
Descriptions

.

Generate Code from
Descriptions

vt

Critique/lmprove
Code

. !

/Solve Problems\

in Environment

Decide what tool
to use next

Get Execute
Observation Tool

[Environment J

o !

B GPT-35

Code Llama

/Optimize Tools\

Identify best tool
based on score

Improve best tool
Based on Errors

_ s

" Input)

Actions: move(roomA, roomB), pickup(obj, room, gripper),
drop(obj, room, gripper)

Initial State: Ball 1, 2, 3, 5 are in Room A, Ball 4, 6 are in
Room B, Robot is in Room A, Right & Left Gripper are free

Goal State: Ball 4, 6 are in Room A
\ J

/¢ Output I

def move_objects(room1, room2, objects, gripper):
for obj objects:
pickup(obj, room1, gripper)
move(room1, room2)
drop(obj, room2, gripper)
move(room2, room1)

Description: This actions moves all objects from one
room to another using a gripper.

Input: room1 (string), room2 (string), objects (list): list of
objects to move from room1 to room2, gripper (string)
Required World State: all objects must be in room1,
the robot must be in room1, gripper must be free
Resulting World State: all objects are now in room2,

kthe robot is in room1 /

