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Abstract

Music plays a vital role in enhancing video content,
yet automatically generating background music that aligns
with a video’s pacing, tone, and narrative remains a com-
plex challenge. This work tackles the task of video-to-music
generation by proposing a novel method that balances
fine-grained temporal synchronization with overall musi-
cal coherence. Our approach combines optical flow–based
motion embeddings with CLIP-derived visual embeddings
through a cross-attention mechanism, enabling the model to
capture both dynamic motion and high-level semantic con-
text. These fused representations condition an autoregres-
sive transformer decoder to generate music tokens aligned
with the visual input. Remarkably, our method remains
competitive with prior work such as VidMuse, despite using
five times fewer parameters and being trained on less than
one-eighth the amount of data. These findings highlight the
critical importance of high-quality, tightly aligned training
data, demonstrating that a well-curated subset of the V2M
dataset can compensate for smaller dataset size and model
scale.

1. Introduction
Music plays a crucial role in enhancing video con-

tent, making it more immersive and emotionally engag-
ing. This is evident on platforms like TikTok, where well-
synchronized music and choreography often capture mas-
sive viewer attention. However, choosing background mu-
sic that aligns seamlessly with a video’s pacing, tone, and
narrative is a complex task—one that typically demands
both creative skill and technical expertise. In this work, we
address the challenge of video-to-music generation: auto-
matically composing background music that not only syn-
chronizes with visual content but also elevates the overall
viewing experience.

The automatic generation of video-aligned music has
applications in film, advertising, gaming, and social me-
dia. Recent advances in multimodal machine learning have
made it possible to generate dynamic, context-aware sound-

tracks. These systems can analyze visual cues—such as
motion, scene transitions, and emotional tone—to produce
music that adapts in real time.

Despite encouraging progress, significant challenges
persist. A major difficulty lies in achieving fine-grained
temporal alignment between visual events and musical el-
ements—for example, synchronizing beat drops with ac-
tion sequences or crescendos with dramatic climaxes. How-
ever, synchronization alone is not sufficient. Equally criti-
cal is maintaining musical coherence; the generated music
must retain internal structure and emotional flow, even as it
adapts to shifting visual content. These two goals can often
be at odds, making video-to-music generation a fundamen-
tally challenging task.

To balance synchronization with musical coherence,
we combine fast-paced motion embeddings with lower-
frequency visual embeddings. The motion embeddings
allow our model to respond rapidly to short-term visual
cues such as quick movements or scene changes, while
the lower-frequency embeddings capture longer-range con-
textual information, including mood, setting, and narrative
arcs. By integrating these complementary perspectives, our
model generates music feels musically intentional while re-
maining tightly aligned with the visual narrative.

In this work, we make several key contributions.
First, we propose a novel architecture that fuses optical
flow–based motion embeddings with CLIP-derived visual
embeddings using a cross-attention mechanism, enabling
the model to capture both fine-grained temporal dynamics
and high-level semantic context. We demonstrate our ap-
proach achieves strong alignment between video and music
while maintaining musical coherence, outperforming prior
work on key metrics like chroma similarity. Finally, we
show that high-quality, tightly aligned training data can
compensate for smaller dataset size and model scale, sug-
gesting a data-centric path forward for improving video-to-
music generation systems.



2. Related Work
2.1. Music Generation

Early approaches to Music Generation relied on sym-
bolic sequence modeling with Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) architec-
tures, which captured short-term melodic and harmonic de-
pendencies but often failed to maintain global coherence or
structural richness, leading to repetitive or disjointed out-
puts [1, 2].

The introduction of transformer-based architectures
marked a major breakthrough in music generation. By en-
abling models to capture long-range dependencies, trans-
formers allowed for the creation of more coherent and struc-
turally complex compositions. Models like MusicGen and
STEMGEN [3] were at the forefront of this innovation,
demonstrating the full potential of transformers with fine-
grained control over aspects such as style, instrumentation,
and overall structure.

More recently, diffusion-based models such as Musi-
cLDM [4] and hybrid architectures like MeLoDy [5] have
redefined the state of the art in audio fidelity and dynamic
expressiveness. These models combine the temporal pre-
cision of diffusion sampling with the contextual modeling
strengths of transformers.

Additional efforts have focused on emotional control and
personalization. Emotion-conditioned systems like ECMu-
sicLM [6] incorporate affective cues into the generative pro-
cess, while reinforcement learning models such as Musi-
cRL [7] adapt generation based on listener feedback, allow-
ing for dynamic, user-aligned musical outcomes.

2.2. Video-to-Music Generation

Video-to-music generation extends music generation
into the multimodal domain. Early work such as Pseudo
Song Prediction [8] explored visual-to-audio mappings
based on pseudo-acoustic similarity, but lacked flexibility
and expressive control.

Attention-based models such as GVMGen [9] and Vid-
Musician [10] improved alignment between visual and mu-
sical structures using hierarchical attention mechanisms.
These systems demonstrated the importance of synchroniz-
ing video motion and structure with rhythm and emotion in
music.

Flow-matching and contrastive learning approaches like
MuVi [11] and beat-aware models such as VMAS [12]
and VMB [13] enhanced emotional congruence and rhythm
alignment by modeling temporal and perceptual structures
more effectively.

Specialized models for dance, such as D2MNet [14]
and D2M-GAN [15], employed beat tracking and adver-
sarial training to tightly couple musical beats with bod-
ily motion. Affect-sensitive and genre-aware systems like

Video2Music [16] and CMT [17] added further nuance
through multimodal conditioning and transformer-based fu-
sion.

Our approach is primarily inspired by advancements in
transformer-based music generation, exemplified by Music-
Gen [3]’s ability to generate coherent and structured mu-
sic. We take a similar approach to VidMuse [10] by con-
structing representations of visual and motion information
from the input video and using these to guide the music
generation process. To incorporate detailed motion infor-
mation, we also draw inspiration from the field of computer
vision, where dense optical flow techniques [18, 19] have
been widely used to capture fine-grained temporal dynam-
ics.

3. Methods
Our approach builds on VidMuse [20], but introduces

a more efficient and context-aware mechanism for captur-
ing both long-range semantics and fine-grained temporal
dynamics. VidMuse predicts music tokens using a rolling
attention window over short- and long-term video embed-
dings. While effective, this method is computationally ex-
pensive and constrained by a fixed lookback window.

In contrast, we seed MusicGen [21] with a fused video
representation that integrates both high-level visual context
and detailed motion information. Specifically, we use CLIP
embeddings to encode semantic content at a low frame rate,
and optical flow to capture motion at a higher frame rate.
Visual embeddings {v1, . . . , vNv} prioritize long-range se-
mantics, while motion embeddings {f1, . . . , fNm

} are sam-
pled more densely to capture short-term dynamics, where
Nm > Nv .

We then apply a cross-attention mechanism, enabling
each visual embedding to attend over the motion sequence,
fusing spatial and temporal information into a set of rep-
resentations {o1, . . . , oNv

}. These are projected into Mu-
sicGen’s token embedding space and used to condition the
model for audio generation. We adopt the same training ob-
jective as MusicGen, predicting the next audio token given
previous tokens and the video context. An overview of
our framework is presented in Figure 1, where components
highlighted in blue denote trainable parameters, and those
in light gray are kept frozen. The following subsections
provide a detailed breakdown of each component in our ar-
chitecture.

3.1. Visual Embeddings

To extract semantic visual features, we uniformly sample
Nv video frames with a frozen CLIP image encoder [22].
Each frame produces Q patch embeddings of dimension D,
yielding a tensor of shape Nv ×Q×D.

Since CLIP is not trained for music generation, we re-
fine these features using a lightweight transformer encoder.



Figure 1. Overview of our framework. CLIP embeddings capture long-range visual semantics at a low frame rate, while optical flow
features capture fine-grained motion at a higher frame rate. A cross-attention module fuses the two modalities before projection into
MusicGen’s embedding space for audio generation. The model is trained as a next token prediction problem with trainable parameters are
highlighted in blue.

We first add learnable spatial positional embeddings, then
apply the transformer over patches within each frame. To
summarize each frame, we apply CLS pooling, resulting in
a sequence of Nv visual embeddings {v1, . . . , vNv

}, where
each vi ∈ RD.

3.2. Motion Embeddings

To capture short-term motion, we sample Nm grayscale
frames at a higher frame rate, such that Nm > Nv . Let
Xm ∈ RNm×H×W denote the frame sequence. We com-
pute dense optical flow between each consecutive frame
pair using the Gunnar Farneback algorithm [23], yielding
per-pixel displacements (∆u,∆v).

We convert these displacements to polar coordinates and
retain only the magnitude, which reflects motion speed.
This results in Nm motion maps {m1, . . . ,mNm

}, where
each mi ∈ RH×W . We embed each map using a learn-
able, non-overlapping 2D convolution with a D×D kernel,
producing Q patches per frame. Similar to the visual em-
beddings, we flatten these patch embeddings and pass them
through a transformer encoder to capture spatial context. Fi-

nally, we apply mean pooling across patches to produce Nm

motion embeddings {f1, . . . , fNm
}, with fj ∈ RD.

3.3. Cross-Attention Fusion

To combine long-range visual context with fine-grained
motion dynamics, we apply a cross-attention mechanism
between the visual and motion feature sequences. Let
{v1, . . . , vNv

} be the visual queries and {f1, . . . , fNm
} the

motion keys and values, with vi, fj ∈ RD.
Cross-attention produces a fused sequence

{o1, . . . , oNv}, where each oi combines the spatial
content of frame i with motion information from the full
sequence. We project each oi into the MusicGen token
embedding space and use these fused representations to
condition audio token generation.

3.4. Music Token Decoder

To generate music conditioned on video input, we use an
autoregressive transformer decoder that predicts a sequence
of discrete music tokens {ȳ1, . . . , ȳT }. At each time step t,
the decoder outputs logits for the current token ȳt ∈ RK×C ,



where K denotes the number of codebooks and C is the
vocabulary size per codebook, following the tokenization
strategy used in MusicGen.

The decoder consists of a transformer architecture with
latent dimension M , allowing for scalable model size de-
pending on computational constraints. It incorporates a
cross-attention mechanism over the fused video representa-
tions {o1, . . . , oNv

}, which are projected into the decoder’s
embedding space as Z ∈ RNv×P×M , where P is the num-
ber of projected features per frame. This allows the decoder
to attend to both long-range semantic and short-term motion
cues from the video.

During training, the model predicts the next token given
all previous tokens and the full visual context Z, using a
standard next-token prediction objective. At inference, the
decoder autoregressively generates music tokens, which are
later converted into audio via the audio codec.

3.5. Audio Codec

To convert between continuous audio and discrete to-
kens, we use a pretrained audio codec that encodes audio
into a sequence of quantized codebook indices and recon-
structs it back into waveform. The codec represents each
audio segment as a grid of size K × T , where T corre-
sponds to the number of time steps and K is the number of
codebooks used for quantization.

Formally, let Cencode(·) denote the audio encoder and
Cdecode(·) the decoder. During training, the ground truth au-
dio segment A is passed through the encoder Cencode(A) to
obtain discrete supervision tokens. These serve as train-
ing targets for the music token decoder. During infer-
ence, the predicted token sequence {ȳ1, . . . , ȳT } is passed
to Cdecode(·) to synthesize the final audio output.

3.6. Training

We train our model using a next-token prediction objec-
tive to align audio generation with video content. Given
a video segment and corresponding ground-truth audio A,
we extract fused video features via the visual encoder and
cross-attention module. These are projected and passed to
the music token decoder, which outputs predicted logits
Ȳ ∈ RK×T×C , where K is the number of codebooks, T
is the number of timesteps, and C is the vocabulary size.

The ground-truth audio A is encoded into one-hot token
representations Y ∈ RK×T×C using the audio codec en-
coder Cencode(A). Each Yk,t,c is 1 if token c is the target at
codebook k and timestep t, and 0 otherwise.

The model is optimized using cross-entropy loss be-
tween Ȳ and Y :

L = − 1

KT

K∑
k=1

T∑
t=1

C∑
c=1

Yk,t,c log Ȳk,t,c (1)

This loss guides the decoder to predict the correct audio
token at each timestep, conditioned on the video input. The
audio codec remains frozen during training.

4. Dataset
To train and evaluate our model, we require high-quality

datasets composed of video–music pairs. To obtain these
pairings, we utilized publicly available YouTube-based
datasets. We employed yt-dlp to download videos at scale.
However, large-scale data acquisition from YouTube posed
challenges due to detection mechanisms and rate limiting.
To address this, we modified several parameters within yt-
dlp to emulate typical user behavior and reduce the likeli-
hood of being flagged as automated traffic.

Additionally, we routed all download requests through
publicly available proxies. While such proxies are often un-
stable, their abundance made our strategy effective: when
one proxy failed, we seamlessly moved to the next in a pre-
compiled list. This proxy rotation mechanism allowed us to
successfully download large-scale datasets from YouTube
while avoiding rate limits and throttling.

With this strategy we downloaded a subset of the V2M
Dataset [20], which comprises approximately 360,000 high-
quality video–music pairs. Due to the scale of the full
dataset, we selected a 20,000-sample subset, extracting only
the first 30 seconds of each video. V2M encompasses a
wide range of media types—including movie trailers, adver-
tisements, and documentaries. This diversity ensures broad
coverage of stylistic and temporal patterns across various
audiovisual domains. Each video–audio pair was carefully
curated to maximize audiovisual alignment, making V2M
particularly well-suited for training dense video-to-music
generation models [24, 20].

Following the download, we extracted raw video frames
and applied music source separation to isolate instrumental
tracks by removing vocals. This step was necessary, as our
model is designed to generate background music without
lyrics. We show a basic outline of this data extraction in
Figure 2

Figure 2. Data Extraction Pipeline.



5. Experiments
5.1. Implementation Details

We trained our model on 13293 samples from the
V2M20K dataset. For optical flow computation, videos
were sampled at 4 frames per second, while raw video
frames were sampled at 2 frames per second to generate vi-
sual embeddings. These embeddings were extracted using
CLIP ViT-B/32, which divides each frame into 32 × 32 pixel
patches. To decode music from the visual input, we utilized
the MusicGen Small variant, which has 300 million param-
eters—significantly fewer than the Medium and Large vari-
ants, which contain 1.5 billion and 3.3 billion parameters,
respectively. Audio was compressed using Encodec [25] at
32 kHz for monophonic output. The model was trained with
the AdamW optimizer and a batch size of 64 samples for 10
epochs with 416 updates per epoch. The initial learning rate
was set to 3.5 × 10−5, with a linear warmup of 4000 steps
and cosine decay to zero each cycle. An EMA with decay
0.99 was applied on the GPU. While training was conducted
for 10 epochs, we observed that both training and validation
losses plateaued after 10 epochs. The entire training process
took 17 hours on 8 L40s GPUs.

5.2. Evaluation Metrics

While we consider human evaluation as the gold stan-
dard for assessing subjective information like music, large-
scale human studies can be prohibitively time-consuming
and costly, especially within the limited timeframe of a sin-
gle academic semester. As a more efficient and scalable
alternative, we evaluate model performance using three key
quantitative metrics: Kullback-Leibler Divergence (KLD),
Fréchet Audio Distance (FAD), and Chroma Cosine Simi-
larity.

KLD measures the divergence between the distributions
of generated and ground-truth audio samples. It is important
to note that KLD is not a true metric as it does not satisfy
the triangle inequality. Specifically, the Kullback-Leibler
divergence between KL(P ||Q) is not equal to KL(Q||P ).
As a result, we compute KLD in both directions, where P
represents the generated audio and Q represents the ground
truth.

FAD, on the other hand, quantifies how closely the gen-
erated audio resembles real audio by comparing feature dis-
tributions in the VGGish embedding space [26]. This al-
lows for a direct comparison of the audio at a feature level,
providing insight into the overall quality of the generated
samples.

The Chroma Cosine Similarity [3] compares the chroma
feature vectors of two audio samples. A chroma feature
vector has 12 dimensions, each corresponding to one of the
pitch classes in music (e.g., C, C#, D, D#, etc.), representing
the harmonic content of the audio at a given moment. For

instance, a chroma vector might quantify how much of the
note ”C” is present, along with the intensities of the other
11 pitch classes. By measuring the cosine of the angle be-
tween chroma feature patterns [27], this metric effectively
captures the similarity between the harmonic structures of
two audio clips, allowing for an assessment of their tonal
and chordal alignment.

Together, these metrics provide a comprehensive and
scalable framework for evaluating generative music mod-
els, offering a quantitative alternative to human judgment.

5.3. Results

We compare our model against VidMuse, as it shares the
core idea of seeding MusicGen with visual context. While
VidMuse was trained across all variants of MusicGen, our
primary comparison is with the version trained on Music-
Gen Small. The authors, however, only provided a model
checkpoint for VidMuse-M so we will compare against this
model. It’s also important to note that this model was
trained on 360k samples while our model was only trained
on 20k. With this in mind, we show the results for our
model in Table 1 and use bold font to highlight the best
values in each row.

From Table 1, we find that the VidMuse model that
is 5 times larger and trained on 8 times more data only
marginally outperforms our model. In fact, our model is
able to achieve higher chroma similarities. Furthermore, the
chroma simiilarities are arguably the most important metric
in this table since they are the only metric that incorporate
musical domain knowledge.

We hypothesize that several key factors contribute to
the performance of our model. First, the VidMuse frame-
work utilizes a fusion of both short- and long-term fea-
tures through spatial and temporal cross-attention mecha-
nisms. In contrast, our approach focuses exclusively on
cross-attention along the temporal axis. By narrowing the
attention scope to the temporal dimension, our model may
find it easier to identify and align the critical features re-
quired for synchronizing video and audio. This reduction in
attention complexity likely helps eliminate irrelevant spatial
information, allowing the model to more effectively capture
the time-based correlations between video and audio sig-
nals, which are crucial for high-quality audio-visual align-
ment. Future work will explore this hypothesis by incorpo-
rating spatial attention into our model to assess its impact
on performance.

Second, the integration of CLIP features alongside opti-
cal flow offers a more robust mechanism for capturing both
long-range dependencies and fine-grained contextual infor-
mation compared to VidMuse’s use of rolling windows for
temporal modeling. CLIP, with its ability to encode se-
mantic visual information into embeddings, provides a rich
and contextually meaningful representation of video con-



Model Params Training Samples FAD ↓ KLD(P∥Q)↓ KLD(Q∥P )↓ Chroma ↑

VidMuse-M 1.9B 360k 2.13 1.32 0.98 0.056
Our Model-S w/o motion 487M 20k 2.89 1.48 1.08 0.059
Our Model-S 487M 20k 2.87 1.48 1.08 0.058

Table 1. Comparison of our model against VidMuse-M across various evaluation metrics. While VidMuse-M benefits from a significantly
larger parameter count and training dataset, our model demonstrates competitive performance—particularly in Chroma similarity, which
reflects musical coherence and alignment..

tent. This enhances the model’s ability to align audio and
video in a semantically coherent manner. Additionally, op-
tical flow, specifically designed for detecting motion be-
tween consecutive frames, has proven highly effective in
a range of computer vision tasks, particularly in modeling
temporal visual dynamics. By leveraging these two pow-
erful features, our model gains a superior understanding of
motion and scene transitions, which are critical for main-
taining synchronization between audio and video over time.
The combination of motion and semantic information en-
coded directly into the model’s features allows it to capture
both long-term dependencies and fine-grained details in the
alignment process, potentially improving performance over
VidMuse’s reliance on less targeted temporal windowing.

Third, we believe the high quality of the V2M dataset
plays a big role in enhancing our model’s performance. The
VidMuse team carefully curated the dataset to ensure that
video and audio components are tightly aligned, signifi-
cantly reducing label noise. This data quality enables our
model to focus on learning the essential mapping between
video and audio, without the distractions of noise or mis-
alignments. Given the meticulously aligned nature of the
dataset, there is less need for an excessively large training
dataset to achieve strong performance. This is further sup-
ported by our observation that both training and validation
accuracies plateaued rapidly, after only 10 epochs of train-
ing.

5.4. Ablations

To evaluate the role of fine-grained motion features, we
conduct an ablation study by removing the optical flow em-
beddings from our model. In this configuration, the model
relies solely on CLIP embeddings, which are processed by a
transformer and subsequently projected into the MusicGen
embedding space. This ablation allows us to isolate and as-
sess the contribution of motion-specific information to the
alignment between video and music modalities. The results,
presented in Table 1, demonstrate a marginal impact when
motion features are omitted.

One potential explanation for this limited impact is the
nature of our training objective, which focuses on match-
ing ground truth music clips given a video input. In this
setup, the model without motion features is already capable
of achieving strong performance, and the addition of mo-

tion features offers minimal incremental benefit under the
current supervision signal. This is reflected in the similar
FAD scores between the full model and the ablated variant.

To more effectively leverage motion features, we believe
that the training objective should explicitly incorporate a
motion-sensitive alignment component, akin to beat align-
ment scheme in [12]. However, introducing such an ob-
jective would require a shift in evaluation strategy. Tradi-
tional metrics such as FAD and KLD, which are designed
to measure similarity to ground truth audio, may not ade-
quately capture the benefits of motion-aware alignment. In
fact, optimizing for motion synchronization could degrade
performance on these metrics, as the model may deviate
from the literal ground truth in favor of better audiovisual
coherence. Furthermore, adding such a component would
require alternative evaluation metrics—such as AV-ALIGN
[24]—that reflect the temporal and semantic congruence be-
tween video and music. Exploring such alignment-aware
training objectives and complementary evaluation protocols
is a promising direction for future work. It opens the door
to models that go beyond literal reconstruction, aiming in-
stead for perceptually meaningful synchronization between
modalities.

6. Conclusion
Our work introduces a novel approach to video-to-music

generation by effectively combining both visual and mo-
tion cues. By leveraging a cross-attention mechanism to
fuse CLIP embeddings for high-level visual semantics and
optical flow for fine-grained motion dynamics, we demon-
strate that this integrated approach captures essential tem-
poral needed for good video-to-music alignment. Notably,
our method outperforms VidMuse on certain evaluation
metrics, such as chroma similarity, which directly reflects
the model’s capacity to understand and align the harmonic
structure of the music with the visual input.

One key observation from our research is the role of
high-quality data in achieving strong model performance.
The V2M dataset’s careful curation, ensuring tight audio-
visual alignment. We believe this tight alignment reduces
label noise and allows our model to model to remain com-
petitive VidMuse despite the smaller dataset and fewer pa-
rameters. The rapid plateauing of training and validation
losses further supports the idea that well-aligned data can



drastically reduce the need for extensive training samples.
Looking ahead, a promising direction for future research

is the incorporation of explicit video-audio alignment ob-
jectives during training. This would necessitate moving be-
yond standard evaluation metrics such as FAD and KLD
toward alignment-specific metrics that better capture per-
ceptual and temporal coherence between modalities. Addi-
tionally, incorporating human evaluations could provide a
more nuanced understanding of the perceptual quality and
emotional relevance of the generated music.

Finally, we aim to explore the integration of textual in-
puts—such as video titles, descriptions, or user-provided
prompts—as an additional modality. Incorporating such se-
mantic information could enrich the contextual understand-
ing of the video content, enabling the model to generate mu-
sic that is not only temporally and visually synchronized but
also semantically aligned. This multimodal extension holds
significant potential to enhance the expressiveness, rele-
vance, and interpretability of the generated music, thereby
expanding the practical utility of video-to-music generation
in diverse real-world applications.
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