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I. INTRODUCTION 
 Unlike supervised learning problems where training occurs on labeled observations, a 
learner in an unsupervised setting is provided only input features.  This paper explores two 
different unsupervised tasks; cluster analysis and dimensionality reduction.  Clustering 
algorithms attempt to group similar observations into distinct classes while dimension 
reduction algorithms seek to transform high-dimensional data into a simpler representation 
that retain the important characteristics of the data.  

 Two common clustering algorithms considered in this analysis are k-means (KM) and 
Gaussian Mixture Models (GMM).  KM is a hard-clustering algorithm in which each 
observation can belong to a single cluster, while GMM is a soft-clustering algorithm in 
which an entry can belong to multiple classes.  The properties of each of these algorithms 
will be explored by analyzing two datasets that vary in size, dimensionality, 
multicollinearity of input features and outliers.  The output produced by each of these 
algorithms will then be used as features to train a Neural Network (NN) and the performance 
of each will be analyzed.  Based on this performance we comment on the appropriateness 
of using these clustering algorithms as a means of feature engineering. 

 Four dimensionality reduction algorithms will also be applied to the two datasets; 
principal component analysis (PCA), independent component analysis (ICA), random 
projections (RP) and recursive feature elimination (RFE).  The clustering algorithms will 
again be run on the dimensionally reduced datasets and the performance of each will be 
analyzed.  Finally, a NN will be trained using the dimensionality reduced datasets produced 
by each of PCA, ICA, RP and RFE.  We will finally comment on the appropriateness of 
each dimensionality reduction technique and consider in what settings certain algorithms 
may be preferred.   

II. DATASETS 
 This assignment retains the NFL Scores Dataset and NFL Play-by-Play Dataset used 
in Assignment 1; we abbreviate these datasets as Dataset 1 and Dataset 2.  While both 
datasets are related to NFL games, each differs in size, dimensionality, balance of positive 
examples and number of outliers.  Dataset 1 contains scores and betting lines of 6,068 games 
dating back to 1970.  In total there are 34 continuous features and the target label is to 
determine whether the home team will cover the quoted point spread.  The output 
classification of this dataset is almost perfectly balanced with the home team covering the 
spread 49.62% of the time.  In contrast, Dataset 2 contains both continuous and categorical 
variables which describe the results of every NFL play from 2010-2019 and the target labels 
are whether a team will run or pass.  In total there are 93,471 entries in the dataset and 
around 40% of them are running plays and 60% are passing plays.   

III. K-MEANS (KM) CLUSTERING 
 KM groups observations based on their proximity to various cluster centers.  The 
algorithm is thus sensitive to the choice of distance function used.  For each dataset, both 
Euclidean distance (L2 norm) and Manhattan distance (L1 norm) were considered.  Both 
metrics were initially tested by running KM with varying numbers of clusters and it was 
found that Euclidean distance produced significantly lower average distances to the cluster 
centers for any number of components.  Such isn’t a surprising result since the L2 norm by 
definition computes the shortest distance between two points.  In contrast, Manhattan 
distance simply sums the magnitudes of vectors along each dimension and thus doesn’t 
compute the shortest distance between cartesian coordinates.  While the L1 norm is less 
sensitive to irrelevant features and outliers, each of our datasets are high dimensional and 
the interactions between various features is unknown. Thus, an outlier in one dimension 
may be counteracted by an outlier in a different dimension.  Given our lack of domain 
knowledge with respect to feature interactions in each dataset, the Euclidean distance metric 
is solely considered to prevent adding undue bias to the algorithm. 
 For each dataset, the elbow method was used to determine the optimal number of 
clusters.  Since increasing the number of clusters will always reduce distortion scores, the 
appropriate number of clusters to select balances between over and underfitting.  The elbow 
method seeks to find kinks in the curve such that adding more clusters show diminishing 
marginal reductions to the distortion.  The second derivative test is used to identify the point 
which maximizes the curvature and thus where the reduction in distortion isn’t worth the 
added complexity.  Figures 1 and 2 plot the distortion scores curves for Dataset 1 and 2 
respectively with the appropriate elbow point indicated.  
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 The optimal number of clusters were found to be 9 and 4 for Dataset 1 and 2.  While 
each dataset contains only two output classes, clustering doesn’t necessarily try to classify 
the examples correctly.  Rather it attempts to identify sets of observations that are most 
similar.  Ideally, however, these groupings would be correlated with the true output labels. 

 The silhouette score is used to evaluate the appropriateness of the cluster classes for each 
dataset.  The calculation for the silhouette coefficient is shown in (1) where cohesion is the 
distance of a point to another in the same cluster and separation is the distance of a point in 
one cluster to a point in another cluster.  Thus, larger values indicate more differentiated 
clusters, values near zero indicate small margins between decision boundaries and negative 
values indicate potential misclassification. 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	 =
𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛	– 	𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥(𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛, 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛)
(1) 

 The silhouette plots for the Dataset 1 and 2 are shown in Figures 3 and 4 respectively.   
The average silhouette coefficients of 0.0873 and 0.060 are small for both datasets indicating 
the clusters identified are close in distance.  The silhouette score for the Dataset 1 is almost 
50% larger than the silhouette score of the Dataset 2 indicating the clusters groupings are 
more distinguished.  While perhaps more clear decision boundaries, the silhouette score 
doesn’t penalize for complexity; with more clusters, the silhouette score monotonically 
increases.  Other measures to evaluate the degree of similarity between clusters are therefore 
necessary.  Figures 5 and 6 show the parallel coordinates plot for each dataset.  From Figure 
5 we notice a general correlation amongst the different groupings; datapoints labeled 0 for 
example all appear to have low values for home overall win %,  average home points scored 
and home win streak and above average values for away team win % away team points 
scored and away team win streak.  Each of the other clusters exhibit similar correlations 
between features indicating the clustering labels in Dataset 1 are appropriately grouping 
observations with similar characteristics.  Figure 6 shows the parallel coordinates plot for 
Dataset 2 and displays some correlation between features and clusters; however, the trend 
is much less convincing.  With fewer clusters less similarities amongst features and 
clustering labels is expected as more compromises will have to be made to group dissimilar 
observations. 
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 We finally consider external measures that utilize the true labels to evaluate the 
clustering performance.  Figures 7 and 8 show the distribution of the true labels within each 
cluster for Datasets 1 and 2.  While many clusters in Dataset 1 have an equal distribution of 
labels, 55.1% of the observations in cluster 5 correspond to observations in which the home 
team covered spread.  Given the dataset is balanced and cluster 5 contains almost 650 
observations, this correlation appears quite significant.  In addition, the clustering 
distribution far exceeds the accuracy required on Vegas bets to break-even.  Recall from 
Assignment 1, that an accuracy of 52.4% is necessary since these bets typically pay -110 
(meaning a $110 bet wins $100).  Moreover, the uneven distribution of the true labels in 
cluster 5 is significant in the scope of the problem.  While cluster 5 appears significant, with 
8 total clusters, a single cluster with an uneven distribution was inevitable; most of the 
clusters are in fact roughly evenly distributed.  Overall, KM performed poorly on Dataset 1, 
producing a low silhouette score and clusters that aren’t highly correlated with true output 
labels.  The performance may be attributed to high multicollinearity between features.  With 
features that are very closely related, KM is implicitly assigning a lot of weight to the same 
feature.  Moreover, methods like PCA may be effective to summarize the correlation 
between features into a single component, enabling KM to produce better groupings. 

 The count of run and pass observations in each cluster in Dataset 2 is shown Figure 8.  
At first glance, the observations in cluster 1 appear to be highly predictive of a pass play 
with over 63% of the observations in this cluster corresponding with passes.  Cluster 1’s 
distribution, however, is similar to the underlying dataset (which contains 60% pass plays) 
and thus isn’t significantly related to the true output labels.  Furthermore, no cluster appears 
significantly correlated with the output labels.  The KM groupings of Dataset 2 is quite poor 
overall; the margin between decision boundaries is small, the features don’t appear 
correlated with output clusters and the distributions of the output labels in each cluster aren’t 
highly correlated with the true labels.  This poor performance can likely be attributed to the 
irrelevance of most of the 46 features in the dataset.  KM suffers from the inductive bias of 
weighting each of these features equally and with many of these features being irrelevant 
such resulted in poorly defined clusters.  Moreover, reducing the dimensionality of the 
dataset may eliminate irrelevant features and thus improve cluster classifications. 
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IV. GMM CLUSTERING 
 GMM is a soft clustering algorithm whereby an observation can be classified into 
multiple clusters.  GMM’s use expectation maximization (EM) to fit several multi-
dimensional Gaussian distributions to the dataset such that the likelihood of each 
observation belonging to a particular cluster  is maximized.  For each dataset, we use the 
Bayesian Information Criterion (BIC) to select the optimal number of Gaussian distributions 
or clusters.  The BIC attempts to maximize the log likelihood of the data while penalizing 
complex representations.  Figures 9 and 10 show the BIC with respect to varying number of 
clusters;  using the elbow method, the optimal number of clusters for Dataset 1 and 2 are 5 
and 7 respectively.  These clusters produced silhouette scores of 0.014 and 0.076.  The 
silhouette score for Dataset 1 is lower than that identified using KM, however this may be 
due to the fact that fewer clusters were used.  Similarly, the silhouette coefficient in Dataset 
2 is larger than that found using KM, but the metric may be biased as more clusters were 
used.  The low silhouette scores for both Datasets suggest clusters are narrowly separated. 

 The performance of GMM on each dataset is next evaluated visually using the parallel 
coordinates plot.  Figure 11 and 12 show the parallel coordinates plot for Dataset 1 and 2 
respectively.  Both figures show little correlation between the clustering labels and specific 
feature values, which is another indication of poorly defined clusters.  Further, from a visual 
perspective, the clusters appear more ambiguously defined than those clusters found using 
KM.  This makes sense since GMM results in more complex decision boundaries than the 
spherical decision margins produced by KM.  These complex decision boundaries result in 
GMM implicitly applying non-uniform weights to each feature, resulting in less intuitive 
interpretations. 
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 Figures 13 and 14 show the distribution of the true labels within each cluster for 
Datasets 1 and 2.  From Figure 13 we see many more observations falling in cluster 3 than 
any other cluster.  In addition, cluster 2 contains very few labels, indicating one of the 
Gaussian distributions converged to group a very small subset of the data.  The grouping of 
cluster 2, however appears to be highly correlated with the output labels with 65.5% of the 
observations in cluster 2 resulting in teams failing to cover the spread.  Each of the remaining 
clusters, however, don’t appear highly correlated with the true output labels.  Similar to 
Dataset 1, we note that clusters 4 and 6 in Dataset 2 contain few observations compared to 
the other clusters.  The observations in these clusters may be statistical outliers that are all 
similar along various dimensions.  In addition, observations in cluster 1 appear to be highly 
correlated with a pass play; 78.7% of the observations grouped in cluster 1 were passing 
plays, which is quite significant given that the dataset contains a 60/40 split of pass plays to 
run plays.  Many of the remain clusters in Dataset 2 show similar, but less extreme relations 
with the true output labels. 

 In contrast to KM, GMM produced clusters with a much wider range of observations 
in each cluster.  This likely occurs due to the close proximity between many of the 
observations.  With observations that are close in distance or even overlapping, the spherical 
decision boundaries that minimize in cluster loss is biased toward creating more evenly 
distributed clusters.  GMM, however, allows for more complex decision boundaries that 
doesn’t suffer from this bias. While these complex decision boundaries are perhaps more 
difficult to interpret, the clusters produced by GMM appear to show a higher correlation with 
the true output labels than KM.  Moreover, the choice of clustering algorithm is a natural 
tradeoff between interpretability and accuracy; if interpretability is important KM is preferred 
and if accuracy is important GMM may be preferred. 
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V. PCA 
 To improve the performance of KM and GMM, PCA was used to reduce the 
dimensionality of the dataset.  Since PCA attempts to identify the best reconstruction and 
thus minimizing L2 error, the optimal number of components is determined by using the 
elbow method on the reconstruction error curves.  Reconstruction error calculates the 
difference in original observations after transforming these observations into a lower 
dimensional space and then decoding and transforming the variables back to the original 
space.  Figures 15 and 16 show the reconstruction error curves for Datasets 1 and 2.  Since 
neither chart produces a clear elbow, we will choose the number of principal components 
that explains 90% of the total variance in each dataset (or equivalently reduces 
reconstruction error to 10%).  12 and 36 components are necessary for Dataset 1 and 2 
respectively to reduce error to this level.  The large percentage of variability explained by 
the first few principal components and exponential decline in reconstruction error seen in the 
Dataset 1 occurs due to highly correlated features; home team 4-week average points scored, 
and home team 5-week average points scored are two separate variables in Dataset 1.  These 
two variables are clearly correlated and can likely be summarized by a single principal 
component.  In contrast, Dataset 2 contains few strongly correlated variables.  As a result, the 
reconstruction error curve decreases more linearly indicating each added component explains 
a similar amount of variance. 
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The first 3 principal components explain 55% of the variance in Dataset 1 but only 
12% of the variance in Dataset 2.  Figure 17 and 18 show a visualization of the first 3 
principal components of Dataset 1 and 2 to visualize how they relate to the true labels.  
Dataset 1 doesn’t appear separable in an intuitive way from these 3 components while 
Dataset 2 appears distinguishable to a reasonable degree of accuracy with 4 clusters.  
Furthermore, given that Dataset 2 appears more separable with features that explain much 
less of the data’s variability may be an indication of more predicative features or the 
existence of more noise in Dataset 1.   
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KM was run on each of the dimensionally reduced datasets.  The elbow method was 
used to identify the optimal number of clusters for Datasets 1 and 2 and these were found 
to be 5 and 32 respectively.  The silhouette scores for these optimal groupings were 0.116 
and 0.46 which are both improvements over the scores found when KM was applied to the 
entire dataset.  The increase in silhouette coefficient of Dataset 2 was expected as many 
more clusters were added.  In contrast, Dataset 1 used fewer total clusters and still saw its 
silhouette score increase, indicating the clusters found are more distinguishable and 
separated by larger margins.  To analyze the groupings visually, Figure 19 shows the 
parallel coordinates plot for Dataset 1.  Each clustering label appears significantly 
dependent on the first 3 principal components.  Observations in cluster 2 for example, 
have above average values for PC0 and much lower values for PC2.  Moreover, the 
improvement in separability of the clusters in Dataset 1 is confirmed visually.  
 

 
Figure 19 

Finally, to evaluate cluster performance using an external measure, Figure 20 shows 
the distributions of true output labels in each cluster.  None of these clusters are strongly 
related to the true output labels.  Cluster 4 appears to be most related as 53.3% of the 
observations in this cluster resulted in teams failing to cover.  Since similar observations 
don’t correspond to similar output labels, such is another indication that Dataset 1 contains 
a lot of noise and outliers. 

 
Figure 20 

GMM was next applied to the dimensionally reduced datasets and using the elbow 
method the optimal number of clusters was found to 3 and 29 for Datasets 1 and 2 
respectively.  The 3 clusters identified on Dataset 1 resulted in a silhouette score of 0.025, 
indicating the clusters found are quite close to each other and almost non-differentiable.  
The score is also noticeably smaller than the 0.116 found with KM.  The parallel 
coordinates plot for Dataset 1 is shown in Figure 21 and confirms the indistinguishability 
of the clusters as there’s no clear correlation between PC values and cluster groupings.  

 
Figure 21 

Figure 22 shows the cluster classifications and their association with the true output 
labels.  Each cluster appears to have an even weighting of positive and negative labels and 
is perhaps more evenly distributed than the clusters produced by KM.  Further, clusters 1 
and 2 have significantly more observations than cluster 0 indicating that one of the 
Gaussian distributions converged to classify a small set of potential outliers.  The cluster, 
however, has maximum entropy and provides no information about the true output label. 

 
Figure 22 

Overall, when applied to the dimensionally reduced datasets, KM produced clusters 
that were more distinctly separated and correlated with the true output labels than GMM.  
Such is an interesting result as with a dataset with many outliers, intuiting suggests soft 
clustering algorithms would outperform.  The poor performance by the GMM may 
indicate that the model converged to a poor local optimum – one in which one of the three 
Gaussian’s converged on a small subset of data that provides no information.  Running the 
algorithm again with different initializations parameters may result in a different local 
optimum with more favorable properties.   

VI. ICA 
While PCA attempts to find mutually orthogonal components that maximize variance, 

ICA attempts to extract features as to maximize independence among extracted features 
while at the same time maximizing the mutual information between the original and 
transformed features.  Said more simply, ICA attempts to find independent features while 
retaining the general properties of the underlying features.   

Due to the symmetry of the distribution and the fact that the joint distribution of two 
Gaussian variables is also Gaussian, ICA breaks down when variables follow a normal 
distribution.  We will thus attempt to select the number of independent components as to 
minimize their “Gaussianality.”  We use Fisher Kurtosis to measure normality in the 
transformed variables.  Gaussian distributions have a Fisher Kurtosis of 0 and thus the 
further a variable’s Fisher Kurtosis is from 0, the less normal the variable.  For each 
dataset, the kurtosis of the transformed components was averaged over 5 seeds and the 



optimal number of components is chosen such a that the average absolute value of Fisher 
Kurtosis is maximized.  Figures 23 and 24 show the average kurtosis with respect to 
varying number of components.  The number of components resulting in the least 
normality in independent components was found to be 29 and 30 for Datasets 1 and 2.  

To further reduce the dimensionality of each dataset, only independent components 
whose individual kurtosis was larger than 1 in absolute value were maintained.  For the 
Dataset 2, this was all of the independent components, however this technique reduced 
Dataset 1 to only 5 components.  Figure 25 shows a chart of the least Gaussian 
components in Dataset 1. 
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KM was next run on the dimensionally reduced datasets.  The elbow method was 
used to identify the optimal number of clusters and they were found to be 3 and 7 for 
Datasets 1 and 2.  The silhouette scores for these datasets were 0.22 and 0.08.  Both of 
which indicate improvements in terms of separability over the performance of KM on the 
full datasets, however Dataset 2 did so at the expense of more clusters.  The more 
differentiated clusters produced by Dataset 1 can be visually observed in the parallel 
components plot in Figure 26.  The clustering labels are highly correlated with the 
independent components, thus providing visual confirmation of increased segregation of 
the clusters. 

 
Figure 26 

GMM was next run on both dimensionally reduced datasets.  Using the elbow 
method, the optimum number of clusters for Datasets 1 and 2 were found to be 3 and 7.  
The silhouette scores from the resulting clusters was 0.22 and 0.14.  Moreover, both the 
number of clusters and silhouette coefficients in Dataset 1 were consistent when using 
both KM and GMM.  This may indicate the dimensionality reductions from ICA 
efficiently separated observations such that they could be clustered in a more consistent 
and efficient manner.   

The parallel coordinates plot of the resulting clusters produced by GMM on the 
dimensionally reduced dataset is shown in Figure 27.  While each cluster appears 
correlated with the first two independent components, the clusters found using GMM 
appear more abstract than those found using KM.  Further, the correlation of each cluster 
to the last independent component appears ambiguous.  This is consistent with our 
previous findings about GMM; the algorithm produces more complex decision boundaries 
that are harder to interpret than KM. 
 

 
Figure 27 

Figure 28 and 29 show the distributions of the clusters produced by KM and GMM 
for Dataset 1.  As can be seen, neither algorithm produced clusters that were significantly 
correlated with the ground of truth labels.  Thus, while the independent components 
produce larger margins – as indicated by larger silhouette scores – that visually appear to 
differentiate the data, the groupings found appear unrelated to the ground of truth labels.  
This again suggests a noisy dataset and underlying features that are poor indicators of the 
target labels. 

 
Figure 28 
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Overall, ICA significantly improved each clustering algorithm on Dataset 1; the 
identified clusters identified exhibited smaller intra-cluster distances and larger inter-
cluster distances.  The technique, however, when applied to Dataset 2 resulted in little 
dimensionality reduction and only marginal improvements in observation groupings with 
KM and GMM.  One potential reason for ICA’s poor performance on Dataset 2 is due to 
the fact that most of the features are uncorrelated.  Since ICA attempts to maximize feature 
independence, little dimensionality reduction will be observed if features are already 
unrelated.  In contrast Dataset 1 contains features that are highly correlated and as such the 
dataset could be reduced to only 5 independent components.  This dimensionality 
reduction enabled for improved performance and consistency among both KM and GMM. 



VII. RP 
RP is similar to PCA, however instead of projecting data onto the vector that 

maintains maximum variance, RP projects data onto randomly generated vectors.  To 
determine the optimal number of random projections we will use the elbow method on the 
reconstruction loss curve.  Figure 30 and 31 show the reconstruction loss curves for 
Datasets 1 and 2 respectively.  Since each curve lacks a clear elbow, we will set a target 
reconstruction loss threshold of 0.4 to determine the optimal number of projections.  That 
is, we will select the number of random projections such that our reconstruction error is 
less than 0.4.  With this threshold, the optimal number of dimensions for Dataset 1 and 2 
were found to be 20 and 27 respectively. 
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KM was next run on the dimensionally reduced datasets.  The optimal number of 
clusters using KM were 7 and 14 for Datasets 1 and 2.  These groupings produced 
silhouette scores of 0.105 and 0.27 which are both improvements over the coefficients 
found when KM was run without dimensionality reduction.  The silhouette score for 
Dataset 2, however has many more clusters and an improved score should be expected.  In 
contrast, the silhouette coefficients improved on Dataset 1 with fewer clusters indicating 
more appropriate and segregated groupings were identified.  Figure 32 shows a 
visualization of the identified clusters for Dataset 1.  The observations appear to be 
significantly correlated with the random components.  Cluster 6 for example shows 
significant positive correlations with RC1 and RC2 and a significant negative relation with 
RC4.  Similar trends are noted with each of the other 6 clusters.  Further, these correlations 
appear to be stronger than when KM was run on Dataset 1 without dimensionality 
reduction. 

 
Figure 32 

When GMM was run on the dimensionally reduced datasets, the resulting number of 
clusters and silhouette scores were found to be 2 and 0.05 for the Dataset 1 and 7 and 0.11 
for Dataset 2.  Thus, GMM when run on Dataset 1 produced the number of output labels 
consistent with the true number of labels.  These groupings however were quite poor as 
indicated by the low silhouette coefficient.  The close and potentially indistinguishable 
decision boundaries can be noted visually from the parallel components plot in Figure 33; 
no clear correlation exists between clusters and random components.  

 
Figure 33 

Figures 34 and 35 show the distribution of positive and negative examples in each 
cluster for KM and GMM respectively.  While GMM produced the appropriate number of 
clusters, the identified groupings aren’t materially related to the ground of truth labels.  In 
contrast a few of the clusters produced from KM show promising correlations to the true 
labels.  Over 55% of the observations in cluster 4 for example correspond to observations 
in which the home team failed to cover.  Given the underlying dataset is balanced and 
there are nearly 900 observations in cluster 4, these results may be significant; more data, 
however, is needed to further validate the association between cluster 4 and the true data 
labels. 

 
Figure 34 
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When KM and GMM were applied to the RP reduced dataset, the resulting clusters 
were comparable in terms of separation to those found when KM and GMM were applied 
after reducing the dataset using PCA and ICA.  The most blatant benefit of RP, however, 
is apparent when analyzing the computational speed of the algorithm.  Figure 36 shows a 
comparison of the training time of RP relative to PCA and ICA on Dataset 2. The speed of 
RP dominates both PCA and ICA and these improvements appear linear in the number of 
components.  While PCA must calculate the orthogonal projection that maximize variance 
and ICA makes calculations to maximize independence and mutual information, RP 
projects data onto randomly generated vectors and thus is much more computationally 
efficient.  Moreover, given the comparability of results and the computational benefits, RP 
is likely preferred when time is a significant constraint.  

 
Figure 36 



VIII. RFE 
RFE was next used as a dimensionality reduction technique on both datasets.  RFE 

requires a supervised learning classifier to rank the features in terms of importance.  The 
algorithm recursively eliminates the least important features until an optimal number of 
features is found.  For each dataset, a decision tree was used to determine the best features; 
the optimum hyperparameters for these decision trees on each dataset were found in 
Assignment 1 and were maintained in this assignment. 

When ranking the features on Dataset 1, the most important feature was found to be 
the away teams win percentage.  Figure 37 shows the frequencies of the true output labels 
with respect to away teams win percentage.  With larger values in this variable, the 
determination of whether the home team will cover is quite ambiguous.  However, when 
the away team’s win percentage falls below 0.3, the home team fails to cover more often 
than not. Such might indicate that when the road team is poor, the Vegas point spreads are 
quoted too large.  The significant correlation seen in lower values of the away team win 
percentage is likely the reason, the feature was found most important.  The worst two 
features for the dataset were found to be home wins and away wins, which likely occurred 
due to the fact that the information provided by these variables is already captured by the 
home team win percentage and away team win percentage features. 

 

 
Figure 37 

 To determine the optimal number of features for each dataset, the cross-validation 
score of the decision tree trained on different feature set sizes was calculated and the 
highest score was selected.  For each dataset, the optimal number of features was found to 
be 4.  Figures 38 and 39 show the cross-validation scores of each dataset with respect to 
varying number of features.  The validation scores in both datasets initially increase before 
peaking at 4, indicating the addition of more variables caused the decision tree to overfit 
and thus reduced generalization accuracy. 
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KM was next applied to each of the dimensionally reduced datasets.  Using the elbow 
method, the optimal number of clusters for Datasets 1 and 2 were found to be 2 and 11 
respectively.  These values resulted in silhouette coefficients of 0.32 and 0.43.  Each of 
these scores are significantly larger than those found when KM was run without 
dimensionality reduction and indicates more distinct groupings.  These vast improvement 
of the silhouette scores may be explained by the inductive bias of KM to weight each 
feature equally.  With very high dimensional data and many irrelevant features, this bias 
prevented the identification of good clusters.  Moreover, using 4 of the most relevant 
features avoids this bias as it gives no weighting to irrelevant features.   

While the silhouette score is almost 0.5 for Dataset 2, the features don’t appear 
significantly related in the parallel coordinates plot as seen in Figure 40.  The identified 
groupings, however, are significantly related to the ground of truth labels in the dataset.  
Figure 41 shows the frequency of Run and Pass observations in each cluster.  As can be 
seen, over 90% of the observations in cluster 7 are passing observations.  In addition, 
75.5% of the observations in cluster 3 are run examples which is particularly impressive 
since most of the observations in the dataset are pass plays (60%).  Many of the other 
clusters exhibit similar correlations with the true labels and thus would likely be good 
features to incorporate into a supervised learning model. 

 
Figure 40 

 
Figure 41 

GMM was finally run on each reduced dataset and it was found that the optimal 
number of clusters was 2 and 4 for Datasets 1 and 2 respectively.  The resulting silhouette 
scores were 0.315 and 0.409 which are significantly larger than those observed when the 
algorithm was run on without dimensionality reduction.  Thus, the clusters identified using 
GMM on the reduced dataset are much more clearly defined.  This can be seen visually in 
Figure 42 which shows the parallel coordinates plot of Dataset 1; feature values and 
clustering labels shows significant correlation.  The clustering labels, however, don’t 
correlate with a team actually covering the point spread as seen in Figure 43.  Since 
similar observations don’t result in similar outcomes, the dataset likely contains 
considerable outliers. 

 
Figure 42 
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RFE effectively reduced two very high dimensional datasets into smaller ones 
containing only 4 features.  The reduced datasets provided significant benefits when KM 
and GMM were used to cluster the observations.  The clusters identified were separated by 
wide decision boundaries and were overall more appropriate than the groupings found by 
running KM and GMM on the datasets reduced using PCA, ICA and RP.  RFE, however, 
suffers from the fact that it requires a supervised learning model – in our case, a decision 
tree – and thus is inappropriate if the true classes of the data are unknown.   

IX. NEURAL NETWORK (NN) TRAINING 
We next look to fit a NN to each of the dimensionality reduction algorithms on 

Dataset 1.  A NN was fit to the dataset in Assignment 1 using all 34 features and it was 
determined that the best architecture consisted of a single hidden layer of size 3; this same 
architecture was maintained when training the classifier on the dimensionally reduced datasets.  
In addition, for each of the dimensionality reduction algorithms, KM and GMM clustering were 
applied.  For KM, the resulting distances to each cluster mean were used as features to train the 
NN.  For GMM, the resulting probabilities of each observation belonging to a particular cluster 
were used as features.  These features were scaled to have a mean of 0 and a unit variance.   

 

A. No Dimensionality Reduction 
A NN was first optimized using random search with 100 iterations to find the optimal NN 

parameters on the full dataset.  Figure 44 shows the learning curve for the optimal NN.  From the 
learning curve we note both high variance as indicated by the divergence of the in and out-of-
sample accuracies as iterations increase.  In addition, the model suffers from high bias with peak 
accuracy not even reaching 50.5%.  As noted in Assignment 1, a NN may not be the most 
appropriate supervised learning model for Dataset 1 given the limited data (with only 6k entries) 
and amount of noise present; decision trees and support vector machines were found to produce 
most accurate results on this dataset. 

 
Figure 44 

KM was next applied to Dataset 1 and the distance of each observation to the cluster means 
were used as features to train the NN.  Figure 45 shows the test accuracies achieved with varying 
number of clusters; these test accuracies are averaged over 10 different random seeds.  The 
optimal test accuracy occurs when 9 clusters were used which resulted in an average test 
accuracy of over 51%.  The accuracies appear highly sensitive to the number of clusters as can 
be seen by the many local optima and minima.  However, there appears to be a sweet spot 
between 9 and 17 clusters where performance is best; any fewer clusters results in underfitting 
and thus higher bias.  More than 17 clusters appear to result in overfitting as average test 
accuracy appears to degrade and variance increase. 

 
Figure 45 

GMM was next applied to Dataset 1 and the probabilities of each observation belonging to a 
particular cluster were used as features to train the NN.  Figure 46 shows the average test 
accuracies achieved using an optimized NN trained on these probabilities.  Peak test accuracy of 
51.7% occurs when 11 clusters are used.  On average more clusters appear to have better 
accuracies than fewer clusters.  This might be due to the fact that with more clusters, 
observations are likely more clearly distinguishable and perhaps have better correlations with the 
true output labels.  In turn, this yields more appropriate features and better performance when a 
NN is trained on these features.   
 

 
Figure 46 

B. PCA 
We saw previously that KM and GMM identified 5 and 3 clusters respectively when run on 

the dimensionally reduced dataset with 12 principal components.  Moreover, we trained 3 NN’s; 
the first used the 12 principle components, the second used the distance of each observation to 
the 5 cluster means from KM and the last was trained on the probabilities of each observation 
belonging to the 3 clusters identified by GMM.  Each NN was optimized using random search 
with 100 iterations to find the best hyperparameters.  The learning curves of these three NN are 
shown in Figure 47.  The NN trained using the PCA appears to exhibit both less variance and 
less bias than the NN trained using all features.  Since the 12 principal components account for 
90% of the variance, the improved performance may indicate that the 10% of the variance not 
captured by these components is simply noise in the dataset.  Thus, not fitting to the noise results 
in both less variance and improved generalization. 

When trained using the features from KM, the model appears less variant, but produces 
significant bias.  The reduction in variance can be explained by the simplicity of the model as it 
contains only 5 features.  The increased bias is likely the result of clustering groupings that aren’t 
highly correlated with the true output labels.  This is evident by noting the cluster with the lowest 
entropy is cluster 4 in which 53.3% of the labels in that cluster correspond to teams failing to 
cover.  The remaining clusters have a more equal weighting and provide even less information. 

The NN trained using GMM probabilities is shows the least variance out of all the PCA 
models as indicated by the close proximity of the training and testing accuracy curves; this is as 
expected since the model is least complex.  Surprisingly, the bias appears lowest in the GMM 
NN which might indicate that the observations in each Gaussian distribution were correlated with 
the true output labels.   

Figure 48 shows the test accuracy of the NN trained with varying numbers of principal 
components.  Random search with 100 iterations was used to identify the best hyperparameters 
for each set of components and test accuracy is averaged over 10 random seeds.   From the 
graph, 8 principal components maximized the test accuracy which contrasts the 12 principal 
components used in our previous analysis.  The 12 principal components used account for 90.2% 
of the variance in the dataset while the first 8 principal components account for 85.3%.  
Moreover, the additional 4 variables that account for only 5% of cumulative variance likely 
capture a lot of the noise present in the dataset.  Thus, their inclusion results in a NN that overfits 
to the noise and doesn’t generalize well.  This illustrates the importance of selecting an 
appropriate variance threshold when determining the appropriate number of principal 
components for inclusion.  While our threshold of 90% was too large, the optimal threshold 
likely depends on the amount of noise in the dataset.  For datasets with fewer outliers, larger 
thresholds are likely preferred.  And, for more stochastic datasets, lower thresholds should be 
considered.   

              (a)  PCA components    (b) KM Distances                 (c) GMM Probabilities 
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Figure 45 

C. ICA 
Recall that for Dataset 1, 5 independent components were found to be optimal and such 

resulted in 3 clusters when KM and GMM were applied.  A NN was trained on the 5 independent 
components as well as the output means and probabilities of KM and GMM.  Each NN was 
optimized using 100 iterations of random search and the learning curves for these NN are shown 
in Figure 49.   

The NN trained using the independent components shows less variance than the NN trained 
using all the features as indicated by less deviation between the training and testing accuracy 
curves.  In addition, the classifier appears to have a similar amount of bias.  Moreover, a similar 
accuracy is achieved using 29 fewer features highlighting the fact that many of Dataset 1’s 
features lack significant predictive power.  The NN trained using the distance to the KM cluster 
centers exhibits a further increase of both bias and variance.  This conclusion is consistent with 
the behavior observed when a NN was trained using the cluster means from PCA and is likely 
due to low correlation between these clusters and the true output label. The test accuracy of the 
NN trained using the probabilities from GMM clustering exhibits an increasing trend with more 
iterations while the training accuracy remains constant.  The inconsistent spike in test accuracy 
after 425 iterations is a testament of the variance remaining in the model.  The general upward 
trend in test accuracy, however, is intriguing and may indicate improved performance with more 
iterations and data. 

Figure 50 shows the test accuracy achieved by a NN with varying independent components.  
Random search with 100 iterations was used to identify the best hyperparameters for each set of 
components and test accuracy is averaged over 10 random seeds.  While 5 components appear to 
produce a local optimum, test accuracy is optimized using 17 independent components.  The test 
accuracy with 5 components, however, has performance only slightly worse than when 17 
independent components are used; the increased complexity from adding 12 additional input 
units may not be worth the marginal improvement in test accuracy. 

 
Figure 50 

D. RP 
The optimal number of random projections was found to be 20 and when KM and GMM 

were used to group the resulting observations, 7 and 2 clusters were identified respectively.  A 
NN was trained with the dimensionally reduced dataset as well as with the outputs from KM and 
GMM.  Each NN was optimized using random search and the learning curves for the models are 
shown in Figure 51.   

The test accuracy of the NN trained using RP appears to dominate the accuracies of both 
PCA and ICA.  This, however, may simply due to the fact that 20 RP were used compared to 
only 12 principal components and 5 independent components.  The larger features set enables for 
more complex decision boundaries and thus less bias at the expense of more variance.  The NN 
trained on the outputs from KM show less variance as observed by the close proximity between 
training and testing accuracy curves;  this makes sense as the model contains fewer parameters 
resulting in a less complex model that is less sensitive to training examples.  The NN trained 
using the outputs from GMM performs incredibly well achieving consistent test accuracies over 
51.5%.  The model also exhibits little variance which is as expected due to the model’s lack 
complexity.  The encouraging performance likely indicates a reasonable correlation between 
produced probabilities and true output labels. 

Figure 52 shows the test accuracy of a NN trained with varying number of RP on Dataset 1.  
Random search with 100 iterations was used to identify the best hyperparameters for each set of 
components and test accuracy is averaged over 10 random seeds.  In our previous analysis, we 
determined the optimal number of random projections was 20, however the number of 
components that resulted in the best test accuracy was 15.  Recall that we selected the optimal 
number of random projections by assigning a reconstruction loss cutoff of 40%.  Reducing the 
dataset to 15 components would have required the acceptance of a reconstruction loss of 
approximately 55%.  This might indicate that our selection for our loss cut off may have been 
inappropriate considering the amount of noise in our dataset.  Furthermore, with 5 more random 
components, our reconstruction loss likely decoded the noise present in the dataset resulting in 
poor out of sample generalization. 

              (a) ICA components    (b) KM Distances                 (c) GMM Probabilities 
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Figure 52 

E. RFE 
A NN was finally trained using the 4 highest ranking features resulting from RFE as well as 

on the outputs from KM and GMM when these algorithms were applied to the reduced dataset.  
Random search was used with 100 iterations to find the optimal hyperparameter for each 
classifier and the learning curves for each of these models is shown in Figure 53. 

The NN trained on the RFE features exhibits low variance and test accuracy that 
outperforms each of the previous dimension reduction algorithms.  This indicates that using only 
the 4 top ranking features can appropriately capture a lot of the information in the dataset without 
overfitting to the outliers and noise.  Favorable initial weights allow for the NN trained on the 
outputs from KM to achieve a test accuracy of almost 52%.  The models performance, however, 
is poor and degrades with more iterations which is likely due to the model’s simplicity; with an 
input layer of size 2 and a single hidden layer of size 3, the model lacks enough complexity to 
generalize well.  Thus, improved test accuracy may be realized by the addition of more hidden 
layers and units in each layer.  While the GMM model is also simple –containing an input layer 
of size 2 and a single hidden layer of size 3 – it performs quite well.  Test accuracy hovers 
around 52% throughout the learning process and approaches the target accuracy of 52.4% (that 
which is required to break-even on Vegas spread bets).  The model also exhibits low variance 
and thus appears superior to all NN models.  The strong performance likely indicates reasonable 
correlations between the GMM cluster probabilities and the target labels.  

Figure 54 shows the test accuracy of a NN trained with varying number of ranked features 
on Dataset 1.  Random search with 100 iterations was used to identify the best hyperparameters 
for each set of components and test accuracy is averaged over 10 random seeds. Using 4 features 
results in a local minimum in terms of out-of-sample accuracy, which likely occurs due to 
underfitting.  With an input layer of size 4 and a single hidden layer of size 3, the network likely 
isn’t complex enough to create appropriate decision boundaries capable of properly classifying 
the examples.  Moreover, with only 4 features, more hidden layers or units in each layer would 
enable for more complexity and likely result in less biased generalization. 

 
Figure 54 

X. CONCLUSION 
KM and GMM can both be effective methods to group similar observations on low 

dimensional datasets.  However, neither of these algorithms scale well with increasing 
dimensionality.  KM in particular suffers from the inductive bias of assigning equal weight to all 
features.  Such a preference is less plausible as dimensionality increases.  This bias also makes 
KM particularly sensitive to irrelevant features and noisy data.  Dimensionality reduction 
algorithms can thus improve the performance of these clustering algorithms by removing 
irrelevant features, thus combating the clustering biases.   

The choice of the appropriate clustering algorithm is problem dependent. With noise-free 
data, GMM may be preferred as the more sophisticated decision boundaries enable for more 
appropriate classifications.  With noisy data, however, KM may be preferred as the complex 
decision boundaries of GMM result in the model overfitting to outliers.  The spherical decision 
boundaries of KM are less susceptible to overfitting and are also easier to interpret.  Thus, if 
interpretation is important or data is stochastic, KM is likely preferred.   

Dimension reduction algorithms simplify the analysis of high-dimensional datasets and 
combat the curse of dimensionality.  Further, using dimensionality reduction techniques to pre-
process features prior to training a supervised learning model can whiten the noise in a dataset, 
thus preventing overfitting and improving generalization.  Dimensionality reduction algorithms, 
however, have several limitations; in particular no dimensionality reduction algorithm can 
correct for non-predictive underlying features.  Further, if features in a dataset are independent 
PCA and ICA will likely provide little benefit.  RFE may be a useful strategy in such situations, 
but the technique requires an underlying supervised learning model and thus output labels must 
be known.   
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