
Temporal Difference Prediction
Scott Merrill

Georgia Institute of Technology
Atlanta, Georgia

smerrill7@gatech.edu
git hash: 921816476da34892224de7c8c54df2e47b4e3182

I. INTRODUCTION
Prediction applies to nearly every domain and helps

determine the future behavior of an unknown system given
the present state. While orthodox methods solve
prediction problems by minimizing an error term between
predicted and observed outcomes, temporal-difference
(TD) methods minimize error between successive
predictions. Prior to Sutton’s 1988 paper on TD learning,
the performance and statistical properties of TD methods
remained unexplored [1]. Still, the technique showed
promise; with impressive implementations in Samuel’s
checker player and Holland’s Bucket Brigade a formal
investigation into the new learning technique was
certainly warranted. With empirical and theoretic
evidence, Sutton proves not only the convergence of TD
strategies, but also their optimality as compared to
traditional supervised learning methods; they converge
quicker, produce more accurate predictions and require
less computational power. In this paper, we attempt to
replicate Sutton’s experiments and comment on the
empirical accuracy and computational advantages of TD
methods.

II. TD LEARNING VS TRADITIONAL LEARNING

A. Faster Convergence
Traditional methods to solve prediction problems take

a supervised-learning approach whereby the learner is
provided input-output pairs and is tasked with identifying
a function that maps the input to the output. This approach
works well in single-step prediction problems where all
information required to determine the accuracy of a
prediction is revealed in one time step. In multistep
prediction problems, however, where partial information
about the prediction accuracy is revealed overtime,
supervised-learning approaches are slow learners; they
don’t learn until the final output is known. In contrast, TD
methods learn through changes in predictions resulting in
quicker convergence.

To demonstrate learning off changes in predictions,
consider Sutton’s example of a weatherman that on each

day of the week, provides the probability of rain on the
following Saturday. If on Monday the weatherman
predicts a 50% chance of rain Saturday and then on
Tuesday, he predicts a 75% chance of rain on Saturday,
TD methods will learn based on this change of prediction.
The supervised learning approach, however, will have to
wait to observe the weather on Saturday before learning
and error minimization can occur. Thus, supervised-
learning strategies minimize in-sample error, whereas TD
methods, as we’ll see in the experiments, find the
Maximum Likelihood Estimation (MLE) of the
underlying Markovian Process. Another point to note is
that the supervised learning approach completely ignores
the structure of the problem and essentially casts a multi-
step problem where information evolves over time into a
single-step problem.

B. Computational Advantages
To demonstrate their memory and implementation

advantages, the TD approach is compared to the Widrow-
Hoff rule, a popular learning procedure often used in
Artificial Neural Networks and Gradient Decent
problems. Both approaches, yield the same outcome but
the TD approach requires significantly less memory and
therefore should be preferred.

Consider a series of input-output pairs
(𝑥!, 𝑥", . . , 𝑥#, 𝑧) where 𝑥$ represents a vector of
observations available at time t and z represents the
outcome. The learner will make predictions 𝑃!, 𝑃", … , 𝑃%
at each time step. For simplicity, consider a linear
prediction function that’s determined solely by a vector of
modifiable weights, denoted w and the most recent set of
observations 𝑥$; thus 𝑃$(𝑥$, 𝑤) = 	𝑤&𝑥$.

Being a supervised-learning approach, the Widrow-
Hoff rule updates the weight vector by differences in the
actual outcome and the predicted outcome at time t.

𝑤 = 𝑤 +	-Δ𝑤$

%

$'!

𝛥𝑤$ = 𝛼(𝑧 − 𝑃$)𝛻(𝑃$

In (2), α is a set learning rate parameter and 𝛻(𝑃$ is the

partial derivatve of the prediction with respect to the

(1)

(2)

weight vector w. In our special case where 𝑃$ = 𝑤&𝑥$,
this equation simplifies to (3).

𝛥𝑤$ = 	𝛼(𝑧 − 𝑤& 	𝑥$)𝑥$

The notable drawback of this method is the updates to

w are dependent on z, which isn’t determined until the end
of the sequence. Predictions therefore must be carried
forward and remembered to determine updates to w. TD
methods evade this consequence by expressing the error in
terms of the sum of prediction errors.

𝑧 − 𝑃$ =-(𝑃)*! − 𝑃))
%

)'$

It can be shown that when error is expressed in this way

the update rule to w becomes (5).

𝛥𝑤$ = 𝛼(𝑃$*! − 𝑃$)-Δ(𝑃)

$

)'!

Since (5) only relies on successive predictions and the

sum of all previous partial derivatives of our prediction
with respect to w; TD methods can be implemented
incrementally and observations need not be carried
forward. Thus, for a sequence of length M, the TD
procedure requires 1/Mth of the memory as the Widrow-
Hoff procedure. Additionally, learning can occur before
the actual observation z occurs.

C. Class of TD methods
As discussed above, TD techniques differ from

supervised learning techniques in that they learn based
on successive predictions rather than the output z. The
example above shows a special case where predictions at
any time t update the weight vector the same.
Generalizations of the TD procedure allow for the
weight vector to be more sensitive to more recent
predictions. Because it can also be implemented
incrementally, Sutton considers exponential weighting
of predictions as defined in (6).

Δ𝑤$ = 𝛼(𝑃$*! − 𝑃$)-𝜆$+)∇(𝑃)

$

)'!

 It’s important to note that when 𝜆 = 1, we have the
special case of the Widrow-Hoff supervised-learning
procedure; we will refer to this alternatively as the
TD(1) procedure. When 𝜆 < 1, the result of 𝑇𝐷(𝜆) is
different than TD(1). The greatest difference occurs
when 𝜆 = 0 and weights are changed only by the most
recent predictions. In this special case, the update rule
becomes (7).

Δ𝑤$ = 𝛼(𝑃$*! − 𝑃$)∇(𝑃$

III. RANDOM WALK EXAMPLE
 Sutton makes an important claim that any dynamic
system that evolves overtime can be represented as a TD
problem that is simpler and more efficient than
supervised-learning methods. Sutton provides empirical
evidence of these claims by implementing a very basic
dynamic system; the bounded random walk. To
investigate Sutton’s claims, we attempt to replicate his
experiment to confirm or refute his conclusions.

A. Problem Description
A bounded random walk is a state sequence produced

by taking successive random steps until a terminal state is
reached. Sutton’s experiment considers a bounded
random walk of 7 states labeled A through G. Each
random walk starts at state D and moves either left or right
with 50% probability. The sequence terminates when
state A or G is reached. A visual representation of the
problem can be seen in Figure 1.

.

 To cast the bounded random walk into a prediction
problem, a reward of z	 = 	0 is given when state A is
reached and a reward of 𝑧	 = 	1 is given when state G was
reached. Both TD and supervised-learning approaches
were used to determine the expected value of the reward
in each state. With rewards defined in this way, the value
of each state corresponds to the probability of the sequence
ending in state G and can be shown to be !

,
, !
-
, !
"
, "
-
	 and

(3)

(4)

(5)

(6)

(7)

Figure 1

	.
,
 for states B, C, D, E and F respectively. With the true

probabilities known, two experiments were conducted to
test the performance of TD-learning and supervised-
learning; the first tests the accuracy of both methods, while
the second tests the speed of convergence.

B. Experiment Design
 To test the desired properties of supervised-learning
and TD methods, the observations from the bounded
random walk had to be generated. As per Sutton’s paper,
100 training sets each consisting of 10 random walk
sequences was generated. The first experiment looked at
seven different values of lambda; 𝜆 =
0.0, 0.2, 0.4, 0.6, 0.8	and	1.0. For each lambda, the TD(λ)
procedure was used with a learning rate parameter of 0.02
to update the weight vector and identify the correct
probabilities for each state. The weight vector was
initialized to 0.5 for each state and each training set was
repeatedly presented to the algorithm until convergence.
We defined convergence as a Euclidean Distance of the
change in weight vector that is less than 0.03. The changes
made to the weight vector were accumulated and updated
once at the conclusion of each training set. The converged
weight vector was averaged over the 100 training sets and
compared to the true probabilities of each state.
 The second experiment contrasts the first in a few
ways, but all is consistent with Sutton’s implementation in
his paper. Unlike the first experiment, each training set is
only presented once, and weight updates weren’t
accumulated but instead adjusted after each sequence. As
the second experiment tested the speed of convergence,
multiple alpha values were chosen and compared to
determine the learning rate which optimizes convergence
speed. All alphas between 0 and 0.6 with increments of
0.05 were tested. And, similar to the first experiment,
weights were initialized to 0.5 for each state.

C. Outcomes and Analysis
The results for the first experiment are shown in Figure

2. The x-axis shows the different values of λ tested and
the y values show the Root Mean Squared Error (RMSE)
between the asymptotic convergence and true
probabilities. As shown in Figure 2, error was minimized
for values of lambda between 0.3 and 0.5 and seemed to
exponentially increase as lambda exceeded 0.6. The worst
performing value of lambda by measure of accuracy
occurred when lambda equaled 1 or equivalently the
Widrow-Hoff procedure. The result is counter-intuitive
but can be explained by the fact that the Widrow-Hoff
procedure minimize the error on the training set not the
underlying Markov process; TD(0) on the contrary

identifies the MLE of the underlying Markovian Process
and performed significantly better.

To highlight the difference between the TD(0) MLE

approach and the TD(1) outcome-based approach consider
how both algorithms would estimate the value of being in
state C given only two random walk sequences:

1. 𝐷, 𝐶, 𝐷, 𝐶, 𝐵, 𝐴, 0
2. 𝐷, 𝐸, 𝐹, 𝐺, 1

For TD(1), the answer is simply 0; C has appeared two
times and each time it resulted in a value of 0. The TD(0),
MLE approach is more complex. In the two sequence, C
was observed twice; once where it transitions to D and
once where it transitions to B. Thus, the value of state C
would be:

𝑉𝑎𝑙𝑢𝑒(𝐶) =
1
2
∗ 𝑉𝑎𝑙𝑢𝑒(𝐵) +

1
2
∗ 𝑉𝑎𝑙𝑢𝑒(𝐷)

To solve this recursive problem, we need both the
value of state B and the value of state D. By the same
logic, the value of state D is given by.

𝑉𝑎𝑙𝑢𝑒(𝐷) =
2
3
∗ 𝑉𝑎𝑙𝑢𝑒(𝐶) +

1
3
∗ 𝑉𝑎𝑙𝑢𝑒(𝐸)

The value of state B is simply 0 since the one time we
observed state B it resulted in a reward of 0. And,
similarly, the value of state E is 1. Simplifying, results in
a system with two equations and two unknowns:

𝑉𝑎𝑙𝑢𝑒(𝐶) =
1
2
∗ 𝑉𝑎𝑙𝑢𝑒(𝐷)

𝑉𝑎𝑙𝑢𝑒(𝐷) =
2
3
∗ 𝑉𝑎𝑙𝑢𝑒(𝐶)

Solving this system of equations results in a value of
state C of 0.25, which is much closer to its true value of

Figure 2

1/3. Moreover, minimizing in-sample error with TD(1)
is a flawed approach that makes no assumptions on the
underlying data generating process. TD(0), however,
uses MLE to predict the underlying model for the
random walk.

The results for the second experiment are shown in
Figure 3. The x-axis shows different learning rates and
the y-axis shows different errors. Four different series
are labeled showing the relationship between error and
learning rate for different values of lambda. As can be
seen, the learning rate has a significant effect on each
algorithms performance. The convex nature of the
RMSE with respect to alpha is a theme also seen in
gradient descent problems; setting the learning rate too
low can drastically increase training time or cause the
problem to get stuck at a local minimum whereas setting
it too high results in an unstable algorithm prone to
overshooting local and global minima. Regardless of the
learning rate, however, TD methods seem to outperform
the TD (1), Widrow-Hoff procedure. Figure 4 again
plots lambda on the x-axis and RMSE on the y-axis,
however, selects the learning rate for each lambda that
minimizes the RMSE. Even with the best learning the
supervised learning method results in the largest error.

It's interesting to note that the optimal algorithm isn’t

TD(0) – the one that finds the MLE of the Markov Process
– but instead occurs when lambda is 0.3. This
demonstrates TD(0)’s property of slow propagation. As
Sutton explains in his paper if the sequence (𝑥/ , 𝑥0 , 𝑥1 , 1)
is experienced, TD(0) will only update the prediction for
F. This contrasts the algorithms where λ > 0 which will
also update the predictions for D and E. While perhaps a
turnoff for situations with limited data and memory
constraints, the slow propagation of TD(0) can easily be
combatted with repeated presentations of sequences or
backpropagation.

D. Comparison to Sutton’s Resutls
Figure 5 shows Sutton’s results obtained from his

first experiment. The resulting figures look very similar
in shape; however, Sutton’s experiment indicates that
RMSE is minimized with a lambda of around 0.3.
While this differs slightly from our replication which
indicates a lambda of 0.4 minimizes RMSE, such wasn’t
the point of the exercise. Sutton’s larger conclusion that
the TD(1) algorithm produces the largest error is clear in
our results as well as Sutton’s.

Nevertheless, this discrepancy may be explained by
differences in training sets or by two main assumptions
required to replicate the experiment. The first inference
was our choice of alpha. Sutton doesn’t specifically
indicate a value used for the learning rate in the first
experiment. Instead he suggests that the algorithm
always converged for “small alpha.” We noticed that for
our training set, any alpha selected greater than 0.02
would result in a divergent solution. Thus, our
experimentation used an alpha value of exactly 0.02.

Another source of difference was our convergence
criteria. Sutton explains that convergence is achieved
when there are “no longer significant changes in the
weight vector.” Thus, there is objectivity in not only the
magnitude of such changes, but also the heuristic for
identifying a change. We considered multiple heuristics
and cutoff points to determine convergence and found
that the Euclidian Distance Heuristic worked quite well.
Convergence was determined when the distance of the
changes in the weight vector was less than 0.03; this
appeared to give the results most similar to Sutton’s.
Interestingly, we noticed, that the more times we iterate
through the training set, the more the figure began to
look like an exponential. We believe this is due to both
the fact that TD(0) and TD(1) converge to different

Figure 3

Figure 4

values and because an exponential factor was chosen to
determine the weights for older predictions.

Our replication of the second experiment also
showed very similar results to Sutton’s. Figure 6 shows
results from Sutton’s experiment. Again, the general
conclusion of the experiment remains unchanged; when
λ < 1, the TD algorithms learn quicker than supervised
learning techniques. Sutton’s experiments are consistent
with ours in that TD(0) and TD(0.3) provided the best
results when considered at their optimal alpha values.
However, the optimal alpha values per Sutton for TD(0)
and TD(0.3) were around 0.3 whereas our experiments
indicate this value to be around 0.2. In addition, the
scale of the RMSE between our results and Sutton’s is
slightly off. Again, however, these discrepancies are
minimal and don’t affect the overall conclusion of the
study. Furthermore, they are likely a result of the
stochasticity of the training datasets.

IV. CONCLUSION
Overall, Sutton’s random walk experiment can be

replicated easily with minimal assumptions and provides
empirical proof of Sutton’s claims about the convergence
properties and optimality of TD methods. The simplicity
of this experiment help reinforce the analytical proofs for
the optimal convergence of TD(0) and suboptimal
convergence properties of TD(1) Sutton provides in his
paper. In addition, the results demonstrate the quicker
learning properties of TD(0) and provide additional
evidence for faster learning properties of generalized TD
algorithms. Furthermore, with empirical proof of faster
learning, empirical and analytical proof of the optimality
of TD(0) under repeated presentations of data, the
suboptimality of traditional supervised-learning
procedures, and the intuitive incremental implementation
of TD methods which saves memory, the choice between
learning methods is self-fulfilling. In every aspect of
learning, TD methods outperform the Widrow-Hoff rule
and supervised-learning procedures and should be
preferred.

REFERENCES
[1] Sutton, R. S. (1988). Learning to predict by the methods of

temporal differences. Machine Learning, 3(1), 9–44.

Figure 4

Figure 5

