
Temporal Difference Prediction 
Scott Merrill  

Georgia Institute of Technology 
Atlanta, Georgia 

smerrill7@gatech.edu 
git hash: 921816476da34892224de7c8c54df2e47b4e3182 
 

I. INTRODUCTION 
Prediction applies to nearly every domain and helps 

determine the future behavior of an unknown system given 
the present state.  While orthodox methods solve 
prediction problems by minimizing an error term between 
predicted and observed outcomes, temporal-difference 
(TD) methods minimize error between successive 
predictions.  Prior to Sutton’s 1988 paper on TD learning, 
the performance and statistical properties of TD methods 
remained unexplored [1].  Still, the technique showed 
promise; with impressive implementations in Samuel’s 
checker player and Holland’s Bucket Brigade a formal 
investigation into the new learning technique was 
certainly warranted.  With empirical and theoretic 
evidence, Sutton proves not only the convergence of TD 
strategies, but also their optimality as compared to 
traditional supervised learning methods; they converge 
quicker, produce more accurate predictions and require 
less computational power.  In this paper, we attempt to 
replicate Sutton’s experiments and comment on the 
empirical accuracy and computational advantages of TD 
methods. 

 

II. TD LEARNING VS TRADITIONAL LEARNING 

A. Faster Convergence 
Traditional methods to solve prediction problems take 

a supervised-learning approach whereby the learner is 
provided input-output pairs and is tasked with identifying 
a function that maps the input to the output.  This approach 
works well in single-step prediction problems where all 
information required to determine the accuracy of a 
prediction is revealed in one time step.  In multistep 
prediction problems, however, where partial information 
about the prediction accuracy is revealed overtime, 
supervised-learning approaches are slow learners; they 
don’t learn until the final output is known.  In contrast, TD 
methods learn through changes in predictions resulting in 
quicker convergence. 

To demonstrate learning off changes in predictions, 
consider Sutton’s example of a weatherman that on each 

day of the week, provides the probability of rain on the 
following Saturday.  If on Monday the weatherman 
predicts a 50% chance of rain Saturday and then on 
Tuesday, he predicts a 75% chance of rain on Saturday, 
TD methods will learn based on this change of prediction.  
The supervised learning approach, however, will have to 
wait to observe the weather on Saturday before learning 
and error minimization can occur.  Thus, supervised-
learning strategies minimize in-sample error, whereas TD 
methods, as we’ll see in the experiments, find the 
Maximum Likelihood Estimation (MLE) of the 
underlying Markovian Process.  Another point to note is 
that the supervised learning approach completely ignores 
the structure of the problem and essentially casts a multi-
step problem where information evolves over time into a 
single-step problem. 

  

B. Computational Advantages 
To demonstrate their memory and implementation 

advantages, the TD approach is compared to the Widrow-
Hoff rule, a popular learning procedure often used in 
Artificial Neural Networks and Gradient Decent 
problems.  Both approaches, yield the same outcome but 
the TD approach requires significantly less memory and 
therefore should be preferred. 

Consider a series of input-output pairs 
(𝑥!, 𝑥", . . , 𝑥#, 𝑧)  where 𝑥$  represents a vector of 
observations available at time t and z represents the 
outcome.  The learner will make predictions 𝑃!, 𝑃", … , 𝑃% 
at each time step.  For simplicity, consider a linear 
prediction function that’s determined solely by a vector of 
modifiable weights, denoted w and the most recent set of 
observations 𝑥$; thus 𝑃$(𝑥$ , 𝑤) = 	𝑤&𝑥$.  

Being a supervised-learning approach, the Widrow-
Hoff rule updates the weight vector by differences in the 
actual outcome and the predicted outcome at time t.  
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In (2), α is a set learning rate parameter and 𝛻(𝑃$ is the 

partial derivatve of the prediction with respect to the 
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weight vector w.  In our special case where 𝑃$ = 𝑤&𝑥$ , 
this equation simplifies to (3). 

 
𝛥𝑤$ = 	𝛼(𝑧 − 𝑤& 	𝑥$	)𝑥$ 

 
The notable drawback of this method is the updates to 

w are dependent on z, which isn’t determined until the end 
of the sequence.  Predictions therefore must be carried 
forward and remembered to determine updates to w.  TD 
methods evade this consequence by expressing the error in 
terms of the sum of prediction errors. 

 

𝑧 − 𝑃$ =-(𝑃)*! − 𝑃))
%

)'$

 

 
It can be shown that when error is expressed in this way 

the update rule to w becomes (5). 
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Since (5) only relies on successive predictions and the 

sum of all previous partial derivatives of our prediction 
with respect to w; TD methods can be implemented 
incrementally and observations need not be carried 
forward.  Thus, for a sequence of length M, the TD 
procedure requires 1/Mth of the memory as the Widrow-
Hoff procedure.  Additionally, learning can occur before 
the actual observation z occurs. 

 

C. Class of TD methods 
As discussed above, TD techniques differ from 

supervised learning techniques in that they learn based 
on successive predictions rather than the output z.  The 
example above shows a special case where predictions at 
any time t update the weight vector the same.  
Generalizations of the TD procedure allow for the 
weight vector to be more sensitive to more recent 
predictions.  Because it can also be implemented 
incrementally, Sutton considers exponential weighting 
of predictions as defined in (6). 
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      It’s important to note that when 𝜆 = 1, we have the 
special case of the Widrow-Hoff supervised-learning 
procedure; we will refer to this alternatively as the 
TD(1) procedure.  When 𝜆 < 1, the result of 𝑇𝐷(𝜆) is 
different than TD(1).  The greatest difference occurs 
when 𝜆 = 0 and weights are changed only by the most 
recent predictions.  In this special case, the update rule 
becomes (7). 
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III. RANDOM WALK EXAMPLE 
 Sutton makes an important claim that any dynamic 
system that evolves overtime can be represented as a TD 
problem that is simpler and more efficient than 
supervised-learning methods.  Sutton provides empirical 
evidence of these claims by implementing a very basic 
dynamic system; the bounded random walk.  To 
investigate Sutton’s claims, we attempt to replicate his 
experiment to confirm or refute his conclusions. 

 

A. Problem Description 
A bounded random walk is a state sequence produced 

by taking successive random steps until a terminal state is 
reached.  Sutton’s experiment considers a bounded 
random walk of 7 states labeled A through G.  Each 
random walk starts at state D and moves either left or right 
with 50% probability.  The sequence terminates when 
state A or G is reached.  A visual representation of the 
problem can be seen in Figure 1. 

. 
 
 
 

  

  

 To cast the bounded random walk into a prediction 
problem, a reward of z	 = 	0  is given when state A is 
reached and a reward of 𝑧	 = 	1 is given when state G was 
reached.  Both TD and supervised-learning approaches 
were used to determine the expected value of the reward 
in each state.  With rewards defined in this way, the value 
of each state corresponds to the probability of the sequence 
ending in state G and can be shown to be !
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  for states B, C, D, E and F respectively.  With the true 

probabilities known, two experiments were conducted to 
test the performance of TD-learning and supervised-
learning; the first tests the accuracy of both methods, while 
the second tests the speed of convergence. 
 

B. Experiment Design 
 To test the desired properties of supervised-learning 
and TD methods, the observations from the bounded 
random walk had to be generated.  As per Sutton’s paper, 
100 training sets each consisting of 10 random walk 
sequences was generated.  The first experiment looked at 
seven different values of lambda; 𝜆 =
0.0, 0.2, 0.4, 0.6, 0.8	and	1.0.  For each lambda, the TD(λ) 
procedure was used with a learning rate parameter of 0.02 
to update the weight vector and identify the correct 
probabilities for each state.  The weight vector was 
initialized to 0.5 for each state and each training set was 
repeatedly presented to the algorithm until convergence.  
We defined convergence as a Euclidean Distance of the 
change in weight vector that is less than 0.03.  The changes 
made to the weight vector were accumulated and updated 
once at the conclusion of each training set. The converged 
weight vector was averaged over the 100 training sets and 
compared to the true probabilities of each state. 
 The second experiment contrasts the first in a few 
ways, but all is consistent with Sutton’s implementation in 
his paper.  Unlike the first experiment, each training set is 
only presented once, and weight updates weren’t 
accumulated but instead adjusted after each sequence.  As 
the second experiment tested the speed of convergence, 
multiple alpha values were chosen and compared to 
determine the learning rate which optimizes convergence 
speed.  All alphas between 0 and 0.6 with increments of 
0.05 were tested.  And, similar to the first experiment, 
weights were initialized to 0.5 for each state. 
 

C. Outcomes and Analysis 
The results for the first experiment are shown in Figure 

2.  The x-axis shows the different values of λ tested and 
the y values show the Root Mean Squared Error (RMSE) 
between the asymptotic convergence and true 
probabilities.  As shown in Figure 2, error was minimized 
for values of lambda between 0.3 and 0.5 and seemed to 
exponentially increase as lambda exceeded 0.6.  The worst 
performing value of lambda by measure of accuracy 
occurred when lambda equaled 1 or equivalently the 
Widrow-Hoff procedure.  The result is counter-intuitive 
but can be explained by the fact that the Widrow-Hoff 
procedure minimize the error on the training set not the 
underlying Markov process; TD(0) on the contrary 

identifies the MLE of the underlying Markovian Process 
and performed significantly better. 

 
 
 
 
 
 
 
 
 
 
 
 
To highlight the difference between the TD(0) MLE 

approach and the TD(1) outcome-based approach consider 
how both algorithms would estimate the value of being in 
state C given only two random walk sequences: 

1. 𝐷, 𝐶, 𝐷, 𝐶, 𝐵, 𝐴, 0 
2. 𝐷, 𝐸, 𝐹, 𝐺, 1 

For TD(1), the answer is simply 0; C has appeared two 
times and each time it resulted in a value of 0.  The TD(0), 
MLE approach is more complex.  In the two sequence, C 
was observed twice; once where it transitions to D and 
once where it transitions to B.  Thus, the value of state C 
would be: 

𝑉𝑎𝑙𝑢𝑒(𝐶) =
1
2
∗ 𝑉𝑎𝑙𝑢𝑒(𝐵) +

1
2
∗ 𝑉𝑎𝑙𝑢𝑒(𝐷) 

To solve this recursive problem, we need both the 
value of state B and the value of state D.  By the same 
logic, the value of state D is given by. 

𝑉𝑎𝑙𝑢𝑒(𝐷) =
2
3
∗ 𝑉𝑎𝑙𝑢𝑒(𝐶) +

1
3
∗ 𝑉𝑎𝑙𝑢𝑒(𝐸) 

The value of state B is simply 0 since the one time we 
observed state B it resulted in a reward of 0.  And, 
similarly, the value of state E is 1.  Simplifying, results in 
a system with two equations and two unknowns: 

𝑉𝑎𝑙𝑢𝑒(𝐶) =
1
2
∗ 𝑉𝑎𝑙𝑢𝑒(𝐷) 

𝑉𝑎𝑙𝑢𝑒(𝐷) =
2
3
∗ 𝑉𝑎𝑙𝑢𝑒(𝐶) 

Solving this system of equations results in a value of 
state C of 0.25, which is much closer to its true value of 
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1/3.  Moreover, minimizing in-sample error with TD(1) 
is a flawed approach that makes no assumptions on the 
underlying data generating process.  TD(0), however, 
uses MLE to predict the underlying model for the 
random walk. 

The results for the second experiment are shown in 
Figure 3.  The x-axis shows different learning rates and 
the y-axis shows different errors.  Four different series 
are labeled showing the relationship between error and 
learning rate for different values of lambda.  As can be 
seen, the learning rate has a significant effect on each 
algorithms performance.  The convex nature of the 
RMSE with respect to alpha is a theme also seen in 
gradient descent problems; setting the learning rate too 
low can drastically increase training time or cause the 
problem to get stuck at a local minimum whereas setting 
it too high results in an unstable algorithm prone to 
overshooting local and global minima.  Regardless of the 
learning rate, however, TD methods seem to outperform 
the TD (1), Widrow-Hoff procedure.  Figure 4 again 
plots lambda on the x-axis and RMSE on the y-axis, 
however, selects the learning rate for each lambda that 
minimizes the RMSE.  Even with the best learning the 
supervised learning method results in the largest error. 

 
 
 
 
 
 
 
 
 
 
 
 
It's interesting to note that the optimal algorithm isn’t 

TD(0) – the one that finds the MLE of the Markov Process 
– but instead occurs when lambda is 0.3.  This 
demonstrates TD(0)’s property of slow propagation.  As 
Sutton explains in his paper if the sequence (𝑥/ , 𝑥0 , 𝑥1 , 1) 
is experienced, TD(0) will only update the prediction for 
F.  This contrasts the algorithms where λ > 0 which will 
also update the predictions for D and E.  While perhaps a 
turnoff for situations with limited data and memory 
constraints, the slow propagation of TD(0) can easily be 
combatted with repeated presentations of sequences or 
backpropagation. 

 
 
 
 
 
 
 
 
 
 
 
 

D. Comparison to Sutton’s Resutls 
Figure 5 shows Sutton’s results obtained from his 

first experiment.  The resulting figures look very similar 
in shape; however, Sutton’s experiment indicates that 
RMSE is minimized with a lambda of around 0.3.  
While this differs slightly from our replication which 
indicates a lambda of 0.4 minimizes RMSE, such wasn’t 
the point of the exercise.  Sutton’s larger conclusion that 
the TD(1) algorithm produces the largest error is clear in 
our results as well as Sutton’s.   

Nevertheless, this discrepancy may be explained by 
differences in training sets or by two main assumptions 
required to replicate the experiment.  The first inference 
was our choice of alpha.  Sutton doesn’t specifically 
indicate a value used for the learning rate in the first 
experiment.  Instead he suggests that the algorithm 
always converged for “small alpha.”  We noticed that for 
our training set, any alpha selected greater than 0.02 
would result in a divergent solution.  Thus, our 
experimentation used an alpha value of exactly 0.02.  

Another source of difference was our convergence 
criteria.  Sutton explains that convergence is achieved 
when there are “no longer significant changes in the 
weight vector.”  Thus, there is objectivity in not only the 
magnitude of such changes, but also the heuristic for 
identifying a change.  We considered multiple heuristics 
and cutoff points to determine convergence and found 
that the Euclidian Distance Heuristic worked quite well.  
Convergence was determined when the distance of the 
changes in the weight vector was less than 0.03; this 
appeared to give the results most similar to Sutton’s.  
Interestingly, we noticed, that the more times we iterate 
through the training set, the more the figure began to 
look like an exponential.  We believe this is due to both 
the fact that TD(0) and TD(1) converge to different 
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values and because an exponential factor was chosen to 
determine the weights for older predictions.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Our replication of the second experiment also 
showed very similar results to Sutton’s.  Figure 6 shows 
results from Sutton’s experiment.  Again, the general 
conclusion of the experiment remains unchanged; when 
λ < 1, the TD algorithms learn quicker than supervised 
learning techniques.  Sutton’s experiments are consistent 
with ours in that TD(0) and TD(0.3) provided the best 
results when considered at their optimal alpha values.  
However, the optimal alpha values per Sutton for TD(0) 
and TD(0.3) were around 0.3 whereas our experiments 
indicate this value to be around 0.2.  In addition, the 
scale of the RMSE between our results and Sutton’s is 
slightly off.  Again, however, these discrepancies are 
minimal and don’t affect the overall conclusion of the 
study.  Furthermore, they are likely a result of the 
stochasticity of the training datasets. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

IV. CONCLUSION 
Overall, Sutton’s random walk experiment can be 

replicated easily with minimal assumptions and provides 
empirical proof of Sutton’s claims about the convergence 
properties and optimality of TD methods.  The simplicity 
of this experiment help reinforce the analytical proofs for 
the optimal convergence of TD(0) and suboptimal 
convergence properties of TD(1) Sutton provides in his 
paper.  In addition, the results demonstrate the quicker 
learning properties of TD(0) and provide additional 
evidence for faster learning properties of generalized TD 
algorithms.  Furthermore, with empirical proof of faster 
learning, empirical and analytical proof of the optimality 
of TD(0) under repeated presentations of data, the 
suboptimality of traditional supervised-learning 
procedures, and the intuitive incremental implementation 
of TD methods which saves memory, the choice between 
learning methods is self-fulfilling.  In every aspect of 
learning, TD methods outperform the Widrow-Hoff rule 
and supervised-learning procedures and should be 
preferred. 
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