Project 1: Supervised Learning

Scott Merrill
smerrill7@gatech.edu

I. INTRODUCTION

The class of supervised machine learning algorithms attempt to
approximate a function that maps inputs to labeled outputs. A wide range of
supervised algorithms exist, each with unique characteristics. The appropriate
algorithm for a given problem is thus dependent on the amount and type of input
data as well as training and testing constraints. This project explores the
properties of several supervised learning algorithms on two datasets to examine
the types of problems certain algorithms may outperform. We specifically train
Decision Tree, AdaBoost, Neural Network, Support Vector Machine and K-
Nearest Neighbor models and explore the effects various hyperparameters have
on the bias-variance tradeoff.

II. DATA SETS

To evaluate the properties of supervised learning models, we’ll look at
two NFL datasets that differ broadly in terms of size, number of features, types
of features, number of outliers, runtime constraints and balance of positive
examples.

A. NFL Scores Dataset

The NFL Scores Dataset [1] contains scores and betting lines of all NFL
games dating back to the 1970s. The goal of this dataset is to predict whether
a team will cover point spread quoted by Vegas Sportsbooks. Since Vegas
spread bets typically only pay -110 (meaning a $110 bet wins $100), correct
classification 52.4% of the time is necessary to break even and thus is the
target accuracy for our models. Also, because game lines are often set days in
advance, training and run-time constraints are ignored in this problem.

The raw dataset contains only NFL scores, game lines and weather
conditions and thus significant pre-processing and feature engineering were
required to extract explanatory variables. In total, 34 continuous features were
created from the underlying dataset. Each of these variables are continuous
and were each standardized to have a zero mean and standard deviation of 1.
The features are largely correlated and can be broadly categorized as either a
metric for wins or points scored.

In total, the dataset contains 6,068 games of which the home team covered
the spread on 3,011 occasions. Thus, dataset is almost perfectly balanced with
the home team covering 49.62% of the time. Since the dataset is nearly
balanced, the Jaccard index is used to compute accuracy score which is simply
the percentage of correct predictions.

B. NFL Play-by-Play Dataset

The NFL Play-by-Play Dataset [2] contains the results of every NFL play
run from 2010-2019. The objective of this dataset is to predict whether the
next play will be a running or a passing play. Further, for models in this
domain to be decision useful and allow for live bets to be placed, testing needs
to be performed before a team runs a play. There is usually around 30 seconds
between plays thus testing time can take no longer than 30 seconds.

The raw dataset contains many continuous and categorical variables that
are largely uncorrelated. Further, the variables vary broadly in terms of
categorization ranging from game-based metrics that measure score, time and
yards to informational categorizations of teams and players. While no features
were specifically manufactured from the dataset, pre-processing was still
necessary to encode categorical variables. One hot encoding was done to each
categorical variable. Additionally, many plays such as kickoffs, field goals,
and punts were dropped from the dataset as our model will not be used to
predict 4™ down or special team plays. Further, only a subset of the dataset
from 2016-2019 was considered and all plays from prior seasons were ignored.

The resulting dataset after preprocessing contains 93,471 entries in total
with 38,238 (40.9%) runs and 55,233 (59.1%) being passes. Moreover, since
the dataset is imbalanced an accuracy measure that takes into account the
relative imbalance of the dataset is thus required. Since we have no preference
over false positives or false negatives, we’ll use the F1 score as our measure
for accuracy. The F1 score is a weighted average of the precision and recall;
precision measures the number of true positives as a fraction of all positive

predictions and recall is the number of true positives as a fraction of true
positives and false negatives. Thus, precision penalizes a classifier for falsely
classifying a negative example as a positive and recall measures a classifiers
ability to correctly classify all positive examples.

C. Additional Comments on Datasets

While both datasets contain information on NFL games and the goal of
both is to produce actionable sports bets, the datasets differ significantly in
terms of the prediction task, features set, correlation between features, size,
number of outliers, balance of positive examples and runtime constraints.
These differences will enable for interesting comparisons between supervised
learning algorithms; some algorithms may perform better with more data while
other models may be better for modeling a noisy dataset with many outliers.
Additionally, some algorithms may be impractical given runtime constrains.
Moreover, selecting datasets with very different properties may provide insight
on when certain models should be preferred and when they should be avoided.

III. MODELING WITH NFL SCORES DATASET

A. Decision Trees

We first attempt to model the NFL Scores dataset using the default
decision tree in sklearn which uses the gini index to optimize tree splits and
sets no constraints to prune leaf nodes. The learning curve for this default
decision tree classifier is shown in Figure 1. The classifier produced high bias
as indicated by the low validation scores and high variance as indicated by
large deviations between the training and validation curves. The variance of
the model is likely a consequence of significant overfitting. With no
maximum depth or pruning, the tree building algorithm iterates until each leaf
node is pure; that is, each leaf node contains only positive or negative samples.
Such results in overfitting as can be seen with the perfect training accuracy.
To counter overfitting, pre-pruning is considered by adjusting both the
maximum depth and minimum leaf size parameters.

Default Decision Tree Learning Curve

10{ 6—o—o—o—o—0o—o—0o—0o—9

09
©
S 08
2 —e— Training score
‘é 07 Cross-Validation score
E]
v}
<

0.6

05

T T T T T T
500 1000 1500 2000 2500 3000
Training Set Size
Figure 1

The depth of a tree corresponds to the length of the longest path from the
root of the tree to a leaf node. As the depth of the tree grows, the model becomes
more complex and is more likely to identify spurious relations between features
and output classes. On the contrary, a depth too small may prevent the tree from
identifying important patterns. To find the optimal balance between over and
under-fitting with regard to the max depth parameter, we plot the validation
curve in Figure 2. While increasing the depth improves training accuracy,
validation accuracy degrades with increased model complexity indicating
overfitting. Thus, smaller depth values will lead to models with lower variance
and similar bias to larger depth models.

Validation Curve for Decision Tree Depth

10 4 — Training score
Cross-validation score
09
oy 0.8
e
3
g 0.7
0.6
05 f——————
0 5 10 15 20 5 0
Depth
Figure 2

The minimum leaf size parameter constraints the tree from creating leaf
nodes with fewer samples than the set value of the parameter and is thus another
parameter that can pre-prune a tree and combat overfitting. Larger values of the
parameter result in less complex trees with smaller depth while smaller leaf sizes
will result in more complex trees that are more likely to overfit. This
relationship can be seen from the validation curve shown in Figure 3. With very
small leaf sizes, perfect or near perfect training accuracy is observed. As the
number of minimum leaf samples grows, training and validation scores begin to
converge indicating a reduction in overfitting and a model with less variance.
On the chosen dataset, however, bias seems largely invariant to different leaf
sizes and thus larger leaf sizes may be preferred as they reduce variance without
sacrificing too much accuracy.

Validation curve for Decision Tree Min Leaf Samples

10 —— Training score
Cross-validation score
0.9
o 0.8
®
g 07
£
0.6
05 A e e TN e
0 20 20 &0 80 100
Min Leaf Samples
Figure 3

In addition to depth and leaf size, many other hyperparameters can be set
which to limit the size of decisions to reducing overfitting. Additionally, the
mechanism by which a tree chooses which node to split on may affect the
performance of the model. The typical approach is to split on the node with the
highest gini impurity but other similarity heuristics such as entropy are also used
in practice. We use grid search to optimize all decision tree parameters. The
exhaustive search technique identified the optimal depth, minimum leaf sample
size, minimum weighted fraction of leaves, minimum splitting samples and
splitting criterion to be 5, 10, 0.03, 2 and gini impurity respectively. The
learning curve of this optimized classifier is shown in Figure 4. Both the training
and validation accuracies begin to converge with increasing sample sizes
indicating a significant reduction of variance from the default model. Bias is
also slightly improved as validation accuracies are higher irrespective of sample
size. Lastly, the validation accuracy appears to increase monotonically with
sample size, indicating more data may work to both improve accuracy and
reduce variance.

Optimized Decision Tree Learning Curve

—&— Training score
0.70 #— Cross-Validation score
0.65
g
€ 060
o
£
055
—o
0.50 r—— ———— l”"'i . . J
500 1000 1500 2000 2500 3000
Training Set Size
Figure 4

The optimized model was used to make predictions on the test set and
resulted in an accuracy score of 51.1%. From the confusion matrix in Figure 5,
we note that the model predicts a team will fail to cover the spread a higher
percent of the time, however the model is also more accurate with these
predictions; when predicting a team will fail to cover the spread it is correct
53.1% of the time. As a result of predicting more teams will fail to cover,
however, the model produces many false negatives. Such isn’t a huge issue in
the scope of this problem as in betting we are indifferent to false negatives and
false positives; we are more concerned with maximizing true positives and true
negatives.

630

660

Fails to Cover 6.9e+02

640

620

True label

600

Covers Spread 6.1e+02

Fails to Cover Covers Spread
Predicted label

Figure 5

B. AdaBoost

The NFL Scores Dataset is next modeled with the default AdaBoost
classifier in sklearn which considers averaging over 50 decision tree stumps (i.e.
decision trees with max depth of 1). The learning curve for this classifier is
shown in Figure 6.

Default Boosting Learning Curve

09
—&— Training score
&~ Cross-Validation score
08
=
® 07
H
o
4
0.6
05 { o g———0—o—2@ -~ o — =
500 1000 1500 2000 2500 3000
Training Set Size
Figure 6

The model produces accuracies on par with the default decision tree
classifier. Variance of the model is large with small training sizes as indicated
by large differences in the training and validation accuracies. These variances,
however, begin to converge as the training set size and thus more data would
likely be beneficial to further reduce variance. Without more data, however we
will consider reducing this variance by adjusting the number and types of
AdaBoost base estimators.

The number of learners in an AdaBoost classifier has a significant impact
on overfitting and model complexity. Since misclassified examples from one
learner are given more relative weight in subsequent learners, more learners
will result in more complex models that are more sensitive to outliers. The
NFL Scores dataset likely contains many outliers whereby an underdog
unexpectedly wins, or Vegas spreads are quoted inconsistently. Moreover,
fewer AdaBoost learners may be beneficial in reducing model complexity and
prevent the model from overfitting to the noise in the dataset. To balance
overfitting and complexity, the validation curve for the number of estimators is
shown in Figure 7. Validation accuracy initially increase with the number of
learners, but the benefit of more learners is muted past 20 learners. As the
number of learners is further increased, training and validation accuracies
diverge indicating a more variance and overfitting.

Validation curve for Boosting Learners

0.64 { — Training score
Cross-validation score

0.62

0.60

0.58

0.56

Accuracy

054

052

0.50

0.48 +— r T T T T
0 20 40 60 80 100
Number Learners

Figure 7

The performance of AdaBoost is also contingent on the quality of the base
learners. The base learners in AdaBoost need to be weak learners that can
correctly classify examples 50% of the time. Given each learner in AdaBoost
is a weak learner, AdaBoost will theoretically produce a more efficient, strong
learner. Decision tree stumps that classify whether the home team covers the
spread may not all be weak classifiers as some features may not be very
predictive when considered in isolation. Moreover, increasing the depth of the
underlying decision trees may increase the accuracy of the base learners and
improve AdaBoost’s performance. Figure 8 shows the validation curve for
AdaBoost when the depths of the underlying decision trees are varied.
Increasing the depth provides little improvement to accuracy of the model. In
addition, large depths result in the base learner’s overfitting which carries over
to the AdaBoost classifier as a whole; this can be seen by the perfect training
accuracies when the depths of the underlying trees exceed 5. Overall, by
varying the depth of the underlying decision trees, bias remains constant and
thus the underlying trees may still not be weak learners.

Validation curve for Boosting Learners

10

09

0.8
—— Training score
07 Cross-validation score

Accuracy

06

05 IS

25 50 75 100 125 150 175
Depth of Decision Tree

Figure 8

Both decreasing the number of learners and increasing the depth of the
underlying decision trees in isolation appear to provide marginal improvements
over the default classifier. Additional hyperparameters, such as the learning rate
and properties of the underlying base estimators can have significant impact on
the performance of the model. Grid search was used to simultaneously find the
optimal set of parameters for AdaBoost and its base estimators. The optimal
number of estimators and learning rate were found to be 7 and 0.95 respectively.
Additionally, the optimal underlying decision tree learner was found to have a
max depth of 2 and minimum leaf samples of 20. The resulting learning curve
for the optimized classifier is shown in Figure 9. Bias and variance appear
slightly improved over the base classifier. Further, accuracy appears to increase

as the training set is increased passed 2,500 samples, indicating additional data
may further reduce bias and variance of the model.

Optimized Boosting Learning Curve

0.75 —e— Training score
®— Cross-Validation score
0.70
.. 065
]
2
§ 060
0.55
——o- = 4
- = —r— " — c
050 1y~ *——e
500 1000 1500 2000 2500 3000

Training Set Size
Figure 9

Using the optimized AdaBoost classifier, predictions were next made on
the test set which produced an accuracy of 49.3%. The confusion matrix for
these predictions is shown in Figure 10. This test accuracy measure falls more
than 2 standard deviations worse than the validation accuracy indicating the
data in the training set may not be representative of the test set or underlying
data generating process.

660

Fails to Cover 5.9e+02 6.8e+02
640
620
600

6.1e+02
580
560

C. Neural Networks

We next evaluate the performance Neural Networks using the default
MLP classifier in sklearn which considers a network with 1 hidden layer of
size 100. The loss curve for this default Neural Network is shown in Figure
11. The default Neural Network results in both high variance and high bias
indicated by an increasing validation loss and decreasing training loss. Given
the NFL Scores dataset only contains 34 features, a hidden layer of size 100 —

more than 3 times larger than the number of features — results in significant
overfitting as indicated by the low training loss.

True label

Covers Spread

Fails to Cover Covers Spread
Predicted label

Figure 10

Loss Curve for Default Neural Network

05
—— Training loss U AW
Cross-Validation loss T
04
" 03
5
0.2
01

0 25 5 75 100 125 150 175 200
Epochs

Figure 11

To tune our Neural Network, an optimal architecture that balances
overfitting with the ability to generalize needs to be identified. In the default
classifier, a single hidden layer of size 100 significantly overfits, which makes
sense since a network of this size contains 4,791 trainable parameters.

Considering our dataset contains only 6,000 entries, overfitting was inevitable.
Simpler architectures are thus considered. However, with two few hidden
layers and nodes in each hidden layer, our model may lose the ability to
generalize. Moreover, 9 different network configurations were tested to
determine the architecture that best balances over and under-fitting. The
optimal network size was found to contain a single hidden layer of size 3 and
the loss curve for this network configuration is shown in Figure 12.

(3) NN Loss Curve

09 - Training loss

Cross-Validation loss
08
0.7

06

Loss

05

04

03

0 25 5 75 100 125 150 175 200
Epochs

Figure 12

The loss curves show low variance as indicated by the proximity between
the training and validation curves. With this reduced variance, however our
model suffers from increased bias; the training loss is much larger than that
observed from the default neural network. Moreover, to add complexity to our
model and improve generalization ability, we consider adjusting alpha, the L2
regularization parameter. This parameter penalizes sparse models; that is
models which contain many parameters whose values are close to zero.
Moreover, larger values for alpha will encourage smaller neural network
weights and simpler models while smaller values will encourage larger weights
allowing for more complex decision boundaries. Thus, smaller values of alpha
may improve bias at the expense of increased variance and overfitting. The
validation curve for alpha are shown in Figure 13 . Surprisingly, decreasing
alpha further increases bias of the model indicating more complex network
representations fail to improve generalization ability. As expected with larger
values of alpha, overfitting and variance are reduced.

Validation curve for Alpha (L2 penalty)

——— Training score
056 Cross-validation score
054
=
o
C 052
=1
o
B
0.50
048
046 T T T T T T T T T T
01 02 03 05 08 13 22 36 60 100
Alpha
Figure 13

Many more parameters exist when defining a neural network that may
help reduce bias. Random search was used to find the set of hyperparameters
that maximizes validation accuracy. It was found that for a network with a
single hidden layer of 3 nodes, the optimal batch size, alpha value and
activation function were 32, 1.51 and sigmoid respectively. The learning and
loss curves for a Neural Network with these parameters is shown in Figures 14
and 15. The model is significantly improved over the default classifier as
overfitting is properly addressed. However, the model still suffers from high
bias which appears to be a decreasing function of the training set size. This
indicates that more data may further improve model performance.

Optimized Neural Network Learning Curve

054 —&— Training score
Cross-Validation score
0.52
>
® 050
5
o
£
0.48
0.46
500 1000 1500 2000 2500 3000
Training Set Size
Figure 14
Optimized NN Loss Curve
7 ——— Training loss
6 Cross-Validation loss
5
" 4
5
3
2
1
0= T T T T T T T T
0 25 50 75 100 125 150 175 200
Epochs
Figure 15

The trained model was evaluated using the test set and the confusion
matrix for which is shown in Figure 16. From the confusion matrix we note
that the model almost always predicts a team will cover the spread and is
correct less than half the time on these predictions. A model that always (or
almost always) predicts a team will cover the spread is uninteresting. It is
clear the model is still overgeneralizing which is likely the result of the
simplistic network configuration. Moreover, additional data is likely
necessary as such will enable more complex network representations to be
constructed allowing for more interesting models and perhaps reduce bias.

1000
Fails to Cover 12e+03
800
o
£
8
v 600
=}
=
400
Covers Spread 1le+03
200

Fails to Cover
Predicted label

Figure 16

Covers Spread

D. Support Vector Machines (SVM)

The default SVM classifier in sklearn uses the Radial Basis Function
(RBF) kernel. This classifier was trained on the NFL Scores Dataset and the
learning curve for which is shown in Figure 17. The default SVM classifier
results in a model with high variance as indicated by large deviances between
training and validation. The model also shows significant bias with an
accuracy around 50% irrespective of the sample size.

Default SVM Learning Curve

0.80
—&— Training score
075 &~ Cross-Validation score
0.70
>
2 065
H
o
< 060
0.55
050 —&—+o—= — 1 ——
500 1000 1500 2000 2500 3000
Training Set Size

Figure 17

To tune an SVM, an optimal architecture that balances variance and bias
needs to be identified. Given our dataset is complex with many features and
we know little about how these features aid in prediction, we’ll fit an SVM on
all kernel function offered in sklearn. In particular, a linear kernel, a 3 degree
polynomial kernel, a sigmoid kernel and the default RBF kernel are
considered. The training accuracy curves as a function of training iteration are
shown in Figure 18. The kernel that most efficiently minimizes loss
(maximizes accuracy) is the RBF kernel and is thus the kernel that will be used
when optimizing the hyperparameters C and gamma to address overfitting and
bias.

SVM Accuracy Curves

0644 linear
poly
0.62 hf
sigmoid
0.60
2 058
E]
§ 0.56
054
052
0.50
0 200 400 600 800 1000
Iteration
Figure 18

The regularization parameter (C) effectively allows adjustments to the size
of the margin of the chosen hyperplane. There is an inherent tradeoff between
the amount of misclassified training examples and size of the margin. Larger
margins (smaller values for C) will result in more misclassification and less
overfitting while the reverse is true for smaller margins (higher values for C).
The validation curve for C is shown in Figure 19. As expected, smaller values
for C resulted in much less overfitting and appear more optimal than larger
values in the noisy dataset.

Validation curve for SVM C (Regularization Parameter)

070 11— Training score
Cross-validation score
0.65
=
g 060
5
o
B
0.55
050 — 1
00 02 04 06 08 10
C (Regularization Parameter)
Figure 19

Another parameter which may reduce overfitting is gamma which allows
us to adjust the weights more distant points have on the location of the
decision boundary. With smaller values of gamma, examples far from the
decision boundary have more influence on the location of the boundary. Such
will result in a less complex model with more bias but less variance. When

gamma is large, close values to the decision boundary carry more weight than
more distant points exposing the model to more overfitting while potentially
reducing bias. The validation curve for gamma is shown in Figure 20. With
small values of gamma, overfitting is small as indicated by the proximity of
the training and validation scores and bias is minimized. Thus, the validation
curve for gamma also suggests less complex models are more appropriate
which makes sense as complex models would be more prone to the outliers
and noise present in the dataset.

Validation curve for SVM Gamma

10
09
.. 08
@ —— Training score
2 Cross-validation score
& 07
0.6
05 Y
T T T T T T
0.0 0.2 0.4 0.6 0.8 10
Gamma
Figure 20

Finally, we use randomized search to tune C and gamma simultaneously.
The optimal values for C and gamma were found to be 0.11 and 0.009
respectively. The learning curve for an SVM model using the RBF kernel and
these parameters is shown in Figure 21. Overall, simplifying the model to
reduce overfitting resulted in both lower variance and bias in comparisons to
the default SVM classifier. In addition, the training and validation curves
appear to both be increasing in parallel as the training set is increased,
indicating that more training samples may improve model performance.

Optimized SVM Learning Curve

0.55 —e— Training score
®— Cross-Validation score
054
053
>
g
3 052
£
o
051
- &
. ol
050 o
/
—o —o ¢
049 T T T T T T
500 1000 1500 2000 2500 3000
Training Set Size
Figure 21

When classifying examples on the test set, the trained model correctly
predicted 51.5% of games. The confusion matrix for the classifiers predictions
is shown in Figure 22. From the confusion matrix we see the model predicts
around 2/3 of the time that a team will cover the spread and is only correct
50% of the time on these predictions. However, when the model predicts a
team will not cover the spread, it is correct over 56% of the time. Since a
sports bettor only needs to predict with 52.4% accuracy to break even on
Vegas spread bets, one potential strategy may be to bet on games in which the
optimized SVM model predicts a team will not cover the spread. Since the
model is correct on these bets 56% of the time, the strategy is theoretically
profitable. However, more data is necessary to verify the low false negative
rate of the model seen on the test set.

800
Fails to C 85e+02
alls to Cover 700
o
£
5 600
v
3
=
500
Covers Spread 8.4e+02
400

Fails to Cover
Predicted label

Figure 22

Covers Spread

E. K-Nearest Neighbor (KNN)

The default KNN classifier in sklearn, which averages the 5 closest
datapoints based on the Euclidean Distance, is fit to the training set of the NFL
Scores Dataset and the learning curve for this classifier is shown in Figure 23.
The default KNN classifier produces significant variance and bias that appear
constant irrespective of training size.

Default KNN Learning Curve

070 .__./0.\.”'_,.’0——0"—'—.
0.65
>
Lé 0.60 —&— Training score
2 Cross-Validation score
£
0.55
0.50

500 1000 1500 2000 2500 3000

Training Set Size
Figure 23

With 34 different features and a noisy database of only around 6,000
samples, the similarity between the 5 closest neighbors may be occurring
spuriously. Thus, increasing the number of neighbors may allow for more
averaging, less overfitting, and a more accurate model. To test this hypothesis,
the validation curve for the number of neighbors is generated and shown in
Figure 24. As can be seen from the validation curve, overfitting is inversely
related to the number of neighbors. With the evaluation of a single neighbor,
the model is perfectly fit to the training set; this results in a model with the
most bias and variance. As the number of neighbors increase, the training and
validation scores begin to converge, and variance is reduced. Other than a
local maximum at around 12 neighbors, increasing neighbors appears to have
little effect on validation accuracy.

Validation curve for KNN Neighbors

10 ——— Training score
Cross-validation score
09
0.8
>
®
g 07
B
0.6
05
0 20 40 &0 80 100
Neighbors (K)
Figure 24

The high dimensionality and noise present in dataset likely make KNN a
poor choice to predict NFL spreads; even with significant averaging, the model
failed to impress. However, several other parameters exist when defining a
KNN model which may improve performance. Grid search was used, and it
was found that the optimal values for the number of neighbors, power

parameter and weighting mechanism were 11, 3 and uniform weighting
respectively. The learning curve for the optimal KNN classifier is shown in
Figure 25. The optimized model still has high variance; however, bias appears
to be improved significantly over the default KNN classifier. In addition, the
validation accuracy appears to be increasing monotonically with the training
set size indicating more data may further improve the accuracy of the model.

Optimized KNN Learning Curve

0641 - Training score

062 o Test SCOT_/M
0.60 //

058
056
054
0.52

Classification Accuracy

0.50
0.48

500 1000 1500 2000 2500 3000
Training Set Size

Figure 25

The optimized classifier was finally used on the test set resulting in an
accuracy of 49.1%. The confusion matrix of these predictions is shown Figure
26. The model produces many more false positives than true positives or true
negatives which is a testament to the high variance that still remains in the
model. While additional data can reduce this variance, a significant amount of
data is likely required due to the high dimensionality of the dataset.

6.1e+02

Fails to Cover 6.5e+02

True label

Covers Spread

Fails to Cover Covers Spread
Predicted label

Figure 26

F. Model Comparisons

Figure 27 shows a comparison of the validation accuracy for the optimal
models with respect to training size. As can be seen, all models seem to
improve in terms of validation accuracy as the training size increases,
indicating all models may perform better with more data. In addition, the
accuracies of each model on the test set for Decision Tree, AdaBoost, Neural
Network, SVM, and KNN were 51.1%, 49.3%, 48.4%, 51.5% and 49.1%
respectively. Thus, the validation scores of each of these models was better
than or equal to the test set accuracies indicating models may be overfitting
and the training set may not be representative of the entire class of NFL game
spreads.

Decision trees provided the most consistent results as both validation and
test scores was 51.1%. This suggest that Decision trees may be most robust
when the training set isn’t representative of the underlying data generating
process. On the contrary, Neural Networks had both the worst performance on
the test set and the largest deviation between validation and test set accuracies
indicating these models are least robust when trained on unrepresentative data.
Neural Networks are thus likely better applied to larger datasets as with more
data the probability that the training set is a representative sample of the true
data generating process is higher.

AdaBoost had the second largest deviation between validation and test
accuracy which also may be explained by the noise present in the training set.
By giving more weight to misclassified outlier examples the algorithm may be
overfitting to this noise which doesn’t scale well when tested out of sample.

The SVM model resulted in the best test set accuracy and a validation
accuracy that only slightly exceeded test set accuracy. Thus, these models
appear appropriate for modeling high dimensional data with limited samples.

Validation Accuracy of Optimized Algos

0520
0515
Z 0510
o
5
§ 0505
—o— KNN
0.500 o~ Neural Network
—e— Decision Tree
0.495 —e— AdaBoost
—o—- SVM
500 1000 1500 2000 2500 3000
Training Set Size
Figure 27

Figure 28 shows the training time of each model. As can be seen, the
Neural Network classifier training time took significantly longer than any
other algorithm even with a small dataset and a single hidden layer of 3 nodes.
The SVM model also displayed much larger training times than Decision
Trees, KNN, and AdaBoost and training time appears to be increasing at the
fastest rate with respect to the training set. Moreover, with larger datasets,
Neural Networks and SVM’s may require significant training time constraints.
Given the context of this problem, however, neither training nor testing time is
of significant importance as Vegas oddsmakers quote game lines days in
advance.

Fitting Time of Optimized Algos

- _e
10 KNN IR -
®— Neural Network /1 \ /

—e— Decision Tree / \, /
0.8 { —e~ AdaBoost o 3
- SVM /
£
B 06
o
]
E 04 &
e
)
0.2 //
'Y .
00| F—F——$—F—F—3—%—o—2
500 1000 1500 2000 2500 3000
Training Set Size
Figure 28

IV. MODELING WITH NFL PLAY-BY-PLAY DATASET

A. Decision Trees

A Decision Tree with default hyperparameters was fit to the NFL Play-By-
Play dataset; the learning curve for this classifier is shown in Figure 29. The
large deviation between the training and validation curves indicates high
variance in the model which is likely explained by overfitting. The validation
score, as computed by the F1 score shows some bias and hovers around 0.70
and 0.71 regardless of the training size indicating additional data may not
improve performance.

Default Decision Tree Learning Curve

100 1@ 4 4 > g 4 4 > > *
0.95
© 090
S
‘: 085 —&— Training score
§ ' ®~ Cross-Validation score
5
& 080
0.75
070 o—o—e—e—0—T00—9o—0o—o—*

5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size

Figure 29

To reduce overfitting, we consider limitations on the maximum depth of the
tree. The validation curve for the tree depth is shown in Figure 30. At lower
depths both bias and variance is minimized. However, as the depth increases

beyond 5, the training and validation accuracies begin to diverge, and the tree
begins to overfit.

Validation curve for Decision Tree Depth

0.88 { —— Training score
Cross-validation score

0.86

0.84

0.82

0.80

Classification score

0.78

T T

25 50 75 100 125 150 175 200
Depth

Figure 30

Given our dataset is unbalanced, we will also consider reducing overfitting
by adjusting the minimum weighted fraction of weight’s parameter. This
parameter constraints the tree from producing a leaf node unless some minimum
weighted percentage of total training examples are classified. This metric is
weighted by the proportion of positive and negative examples in the dataset.
Since the NFL Play-By-Play dataset contains roughly 40% run plays and 60%
pass plays, this metric should result in a less biased pruning method. The
validation curve for this parameter is shown in Figure 31. The training and
validation scores are distant at small weights but as weights increase both
variance and bias are reduced. When the parameter is 0 no pruning occurs and
the decision tree is able to perfectly classify all the training examples.

Validation curve for Decision Tree Min Leaf Samples

100 —— Training score
Cross-validation score
0.95

0.90

0.85

Accuracy

0.80

0751/

0.70

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Minimum Weighted Fraction for Leafs

Figure 31

As was done on the previous dataset, we next train all hyperparameters
simultaneously as to further improve validation performance and minimize
variance in our model. The optimal depth, weighted fraction of leaves,
minimum samples for a split and splitting criterion were 8, 0.0039, 2 and the
gini criterion respectively. The learning curve for the optimized tree is shown
in Figure 32. In comparisons to the default classifier, overfitting, variance and
bias are all reduced significantly. Both the training and validation scores
remain bounded as training examples are increased passed 20,000. Thus, the
addition of more data will unlikely improve the model further.

Optimized Decision Tree Learning Curve

—&— Training score

0.790 &~ Cross-Validation score

0.785
[0y
e
S 0780
o
B

0.775 r—e

LT /
_» o M N
o
0.770

5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size

Figure 32

When used to classify examples in the test set, the optimized classifier
produced an F1 score of 78% and the confusion matrix shown in Figure 33.
The model predicts many more pass plays than run plays and as a consequence
produces many false positives. Given our indifference between false positives
and false negatives in the scope of this problem, this is not a big issue.

18000
16000
14000
12000

10000

True label

Pass

Run Pass
Predicted label

Figure 33

B. AdaBoost

We next consider the application of AdaBoost on the NFL Play-By-Play
Dataset. The learning curve for the default AdaBoost classifier consisting of 50
decision tree stumps is shown in Figure 34. Both the learning curve and
validation curves converge quickly after 10,000 samples indicating minimal
variance and overfitting. This demonstrates an important property of AdaBoost;
when the base learners in AdaBoost are weak learners that don’t overfit the
dataset, AdaBoost is robust to overfitting due to the averaging effect. Moreover,
the decision tree stumps likely have these properties. In addition to low variance
and overfitting, the model has less bias than the optimal decision tree classifier.
Bias, however, doesn’t appear to be reduced as the training set size exceeds
15,000, indicating more data may not improve performance.

Default Boosting Learning Curve

0.788
—&— Training score

0.786 #~ Cross-Validation score
0.784
0.782

0.780

Accuracy

0.778

0776

0774

5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size

Figure 34

Since overfitting doesn’t appear to be a huge issue, we’ll experiment with
adding complexity to the model by increasing the number of learners. With
our dataset that contains few outliers we would expect model accuracy to
improve with the number of learners without sacrificing much in terms of
variance. The validation curve for the number of learners is shown in Figure
35. As we’d expect the validation accuracy of the model improves with the
number of learners while variance and overfitting only appear to increase after
80 learners are added.

Validation curve for Boosting Learners

- Training score
0782 Cross-validation score
0.780
0778
=
@ 0776
=2
o
¥ 0774
0.772
0.770
0.768
0 20 P &0 &0 100
Number Learners
Figure 35

To add further complexity, we will modify the depth of the underlying
decision trees. Figure 36 plots the validation curve for AdaBoost when
modifying the depth of the decision trees used in the algorithm. As seen in the
validation curve, AdaBoost begins to overfit the data as the depth of the
underlying decision trees increases. This makes sense as if the underlying
base learners in AdaBoost overfit the data, then AdaBoost may not provide
immunization from overfitting. Thus, using decision trees with larger depth
that overfit the training data will consequently result in AdaBoost overfitting
to the training set.

Validation curve for Boosting Learners

100 1 — Training score
Cross-validation score

25 50 75 100 125 150 175
Depth of Decision Tree

Figure 36

We next look to train all of the hyperparameters simultaneously as to
further improve validation performance and minimize variance in our model.
The optimal number of estimators and learning rate were found to be 95 and
0.95 respectively. The optimal depth, weighted fraction of leaves minimum
samples for a split and splitting criterion for the base learners were 2, 0.001, 2
and the gini criterion respectively. The learning curve for the optimized model
is shown in Figure 37 and displays less bias than the default classifier at the
expense of slightly more variance. This is as expected since complexity was
added to the model with the addition of more estimators and a deeper
maximum tree depth. However, even with this increased variance, the
optimized model seems to handle overfitting well as both the training and
validation accuracy appear to be converging with increasing sample size.

Optimized Boosting Learning Curve

082 —&— Training score
®~ Cross-Validation score

0.81

0.80
fny
C
3 0.79 *> ® - > =
& "

078 Lo

_»
/'77
0.77 7
076 { &

5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size

Figure 37

The optimized AdaBoost algorithm was used to classify examples on the
test set, and the confusion matrix for the tree is shown in Figure 38. The

algorithm performed quite well on the test set producing an F1 score of 78%,
however like the decision tree the model produced many false positives.

Given both models have produced many false positives, such may indicate that
many of the outliers present in the data are run plays.

18000
16000
Run 81le+03

14000
12000

10000

True label

Pass 3 19e+04

Run Pass
Predicted label

Figure 38

C. Neural Networks

The default sklearn Neural Network classifier with a single hidden layer of
100 neurons was fit to the NFL Play-By-Play training set; the learning and loss
curves are shown in Figures 39 and 40 respectively. While the training and
validation accuracies remain close regardless of the sample size in the learning
curve, the two curves diverge with increasing epochs in the loss curve; the
results from these charts provide ambiguous results as the learning curve
indicates the model may be underfitting while the loss curve displays potential
overfitting. Moreover, due to the conflicting messages from the learning and
loss curves both simpler and more complex network representations are
considered.

Default Neural Network Learning Curve

—&— Training score

0.78 &~ Cross-Validation score

0.76
[y
®
H
g o7

0.72

070 T T T T T T T T T

5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size
Figure 39
Loss Curve for Default Neural Network
- Training loss

021 Cross-Validation loss

0.20
]
5019

1" " ‘.‘,“
™ V‘ AN '..7‘."‘»4".wﬂ\n"\,‘A"_‘TV”x”‘« T h~,'r}‘4’,“"r ‘V'"“'A b Ui
018 AT
017

0 25 5 75 100 125 150 175 200
Epochs

Figure 40

In total 5 different network architectures were considered, and the optimal
configuration was found to be a simpler one with a single hidden layer of size
24. The simplicity of the optimal model is particularly surprising; a network of
this size contains only 3,553 tunable parameters which is small given our dataset
contains almost 100,000 entries. With such a large dataset our network should
be able to handle more complex network representations, however this was not
found to be the case. The loss curve for this neural network configuration is
shown in Figure 41. Training and validation losses narrowed from the default

classifier indicating overfitting was reduced. This is an expected consequence
of a smaller, less complicated network.

(24) NN Loss Curve

023 —— Training loss
Cross-Validation loss
0.22
021
]
o
- 020
019
™ 4‘ - 1...v‘;, MoV '-. N
018 Arwh Al i

0 25 s 75 100 125 150 175 200
Epochs
Figure 41

We next evaluate the impact of alpha on this neural network architecture.
In sklearn, alpha corresponds to the L2 regularization term that penalizes
sparse models where only a few parameters are non-zero. Thus, larger values
of alpha will penalize more complex networks that generate more curved
decision boundaries while smaller values of alpha will result in more
complicated models that may improve accuracy at the expense of overfitting.
The validation curve for alpha is shown in Figure 42 further indicating that as
alpha is increased, simpler models are preferred thus reducing variance and
overfitting. Added complexity however fails to have a significant impact on
bias as the validation score remains relatively stable when alpha exceeds 0.25.

Validation curve for Alpha (L2 penalty)

—— Training score

0.7825
Cross-validation score

0.7800

0.7775 4

0.7750

0.7725 S ———

ALLuracy
|
\

07700 4|
0.7675

0.7650 4

T T T T T T

0.0 0.2 04 0.6 0.8 10
Alpha

Figure 42

Using random search all hyperparameters were tuned simultaneously to
maximize validation accuracy. The optimal parameters for the batch size,
alpha, activation function and solver were 128, 0.198, sigmoid activation and
Adams optimizer respectively. The learning curve and loss curves for a
Neural Network with these parameters is shown in Figures 43 and 44. The
model shows both less bias and variance than the default network as both
training and validation loss are lower in absolute value and remain relatively
close with each epoch. Given the network size was decreased and alpha was
increased, simpler models appear to outperform more complex ones on this
dataset.

Optimized Neural Network Learning Curve

0.780

—&— Training score
®— Cross-Validation score

0.778

0.776 4

0.774 4

Accuracy

0.772 4

0.770 4

0.768 4

5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size

Figure 43

Optimized NN Loss Curve

——— Training loss
Cross-Validation loss
0.40
0.35
]
3030
0.25
020 14—

0 25 5 75 100 125 150 175 200
Epochs

Figure 44

On the test set, the optimized Neural Network showed consistent results
also obtaining an F1 score of 77%. Unlike the previous models, the Neural
Network produces a similar number of false negatives and false positives.

16000

14000

12000

10000

8000

6000
D. Support Vector Machines

An SVM model was fit on the NFL Play-By-Play Dataset with the default
parameters in sklearn. The learning curve for the default model is shown in
Figure 46. The learning curve shows relatively consistent results on training set
sizes less than 35,000, however increasing the training set beyond this point
results in reduced accuracy. Such is likely the consequence of the model failing
to converge in the constrained number of iterations when the training set is
incremented beyond this point.

Run 9.6e+03

True label

Pass

Run Pass
Predicted label

Figure 45

Default SVM Learning Curve

0.780

0.775

0.770

0.765

Accuracy

0.760

0.755 1 —e— Training score
o~ Cross-Validation score

5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size

Figure 46

Prior to tuning hyperparameters, the appropriate kernel function was
selected by evaluating the training accuracy curves as a function of training
iteration. These curves are shown in Figure 47 and indicate the RBF kernel
provides the quickest convergence and most efficiently maximizes accuracy.
Moreover, this kernel will be the considered when optimizing our model.

SVM Accuracy Curves

0.50 — linear
poly
045 1 —
— sigmoid
0 500 1000 1500 2000 2500 3000
Iteration

Figure 47

With our kernel selected we continue to specify C and gamma. Both C
and gamma provide metrics for adjusting the complexity of the SVM. C
allows adjustments to be made to the margin of the hyperplane and gamma
determines the weights each support vector carries in determining the optimal
hyperplane. Moreover, with higher values of C and smaller values of gamma,
margins are smaller and support vectors closer to the dividing hyperplane carry
more weight. Such results in a more complex model. In contrast smaller
values of C and larger values of gamma results in larger margins and more
distant support vectors carrying more weight. This allows for less complex
model that may be less prone to overfitting but may not be complex enough to
generalize well.

Validation curve for SVM C (Regularization Parameter)

077 —— Training score
Cross-validation score
0.76
0.75
>
g
3074
B
0.73
0.72
0.71
T T T T T T
0.0 0.2 04 0.6 08 10
C (Regularization Parameter)
Figure 48
Validation curve for SVM Gamma
0.85 ~—— Training score
Cross-validation score
0.80
0.75

0.65 —
0.60
055
00 02 04 06 08 10
Gamma
Figure 49

The validation curves for C and gamma are shown in Figures 48 and 49
respectively. Smaller values of both C and gamma appear to be preferred over
larger values. These results contradict each other as smaller values of C would
indicate a preference for less complex models while smaller values of gamma
would be biased towards more sophisticated models. Given the low variance
and overfitting seen in the default SVM classifier, our model can likely handle
more complexity. Thus, the preference for smaller values of C shown in the
validation curve may simply be a consequence of more complex models
failing to converge within the set maximum number of iterations and thus
producing lower validation accuracies.

To find an optimal balance between C and gamma, randomized search
was used to tune both parameters simultaneously. The optimal values for C

and gamma were found to be 0.11 and 0.009 respectively. The learning curve

for the optimal SVM model is shown in Figure 50. The optimized model

displays similar bias and variance as the default model for training set sizes

below 35,000. However, the model is more robust to larger training set sizes.

Even so, however, additional data will not likely improve performance of the

optimized model since validation accuracies appear to remain constant.
Optimized SVM Learning Curve

—&— Training score

0778 ®~ Cross-Validation score

0.776

0774

0.772

Accuracy

0.770

0.768

0.766 T T T T T T T T T
5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size

Figure 50

Applying this optimal SVM model on the test set resulted in an accuracy
score of 77% and the confusing matrix shown in Figure 51. While the F1
score is comparable to other models, the overall accuracy score is much lower
(only around 60%). The model’s performance was likely hindered due to both
the complexity and size of the dataset. Such resulted in the SVM failing to
converge and thus suboptimal models. Training on a subset of the training set
or applying feature reduction techniques may be beneficial to improve the

performance of the model.
20000
17500
15000
12500
10000
7500
5000
2500

E. K-Nearest Neighbor

The default KNN classifier which uses Euclidean Distance and averages
over 5 neighbors was fit to the second dataset; the learning curve for which is
shown in Figure 52. The default classifier results in high variance, bias and
overfitting. Given the high dimensionality of the dataset with 48 features and
its size of 100,000 entries, such results aren’t surprising. Since the model only
considers the 5 closest neighbors — or 0.0005% (5/100,000 * 100) of the
dataset — to make predictions, the model is particularly prone to outliers and
irrelevant features.

True label

Pass

Run Pass
Predicted label

Figure 51

Default KNN Learning Curve

078 | *——g—=_e—e——— 0TI ET T
0.76
074
>
@ 072 —e— Training score
5 .
o #~ Cross-Validation score
2 0.70
0.68
—r—P
0.66 —o— ————— 90—

5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size

Figure 52

Allowing our KNN model to consider more learners may be beneficial as
to reduce overfitting and improve validation accuracy. We test this hypothesis
by plotting the validation curve in Figure 53. The validation accuracy
improves while variance reduced with the addition of more neighbors. Beyond
300 neighbors, however, reduction to variance and bias are marginal.

Validation curve for KNN Neighbors

] —— Training score
Cross-validation score

0 100 200 300 400 500 600
Neighbors (K)
Figure 53

The accuracy of KNN relies heavily not only on the number of neighbors
but also the weighting method used for the neighbors and the metric used to
compute distance. Thus, randomized search was used to train all of these
hyperparameters simultaneously. The optimal number of neighbors weighting
metric and distance metric were found to be 296, uniform weighting and
Manbhattan distance respectively. The learning curve for this model is shown
in Figure 54. The optimized model significantly reduced bias, variance and
overfitting over the default model. Further, as training size increases,
validation score seems to increase monotonically indicating that more data will
further improve model performance.

Optimized KNN Learning Curve

0.775 4

—&— Training score
&~ Test score

0.770

0.765

0.760 4

Classification Accuracy

0.755 4

0.750

5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size

Figure 54

Predictions were made using the optimized KNN model on the test dataset
which resulted in an accuracy score of 77%. The confusion matrix for the
model is shown in Figure 55. The model performed surprisingly well out of
sample considering the high dimensionality of the dataset. The large size of
the dataset likely countered the dimensionality issues as more data allows for
more neighbors to be averaged thus reducing the effects of outliers and noise.

18000

16000
Run 7.4e+03 7.9e+03
14000

True label

Pass 3 03 19e+04

Run Pass
Predicted label

Figure 55

F. Model Comparisons

Figure 56 shows a comparison of the validation accuracy for the optimal
models with respect to training size. The validation accuracy for both KNN
appears to be increasing with respect to training set size suggesting that when a
dataset doesn’t contain much noise more comparable neighbors can be
identified with larger datasets and thus model performance can be improved.
AdaBoost also seems to perform better with increasing training set sizes which
may be explained by more accurate weak learners on larger datasets.

When evaluated using the test set F1 scores for the Decision Tree,
AdaBoost, Neural Network, SVM and KNN classifiers were 78%, 78%, 77%,
60% and 77% respectively. Moreover, aside from the SVM, all models
produced similar test scores to their validation scores indicating the data in the
training set was representative of the data in the test set. The SVM model’s
poor performance is likely a result of the model not converging on an optimal
solution. As more training data is fed to an SVM, the optimization becomes
increasingly difficult and convergence requires many more optimization
iterations.

Decision Trees, AdaBoost and Neural Networks all had test accuracies
that were consistent with their validation accuracies and all appear to be well
equipped to handle large high dimensional datasets that don’t contain many
outliers.

Validation Accuracy of Optimized Algos

0.785
0.780

>

@ 0775

=]

o

£ 0770

c

2

w® 0765

]

% 0760 { ~*

S o~ Neural Network
0.755 { —e— Decision Tree

—e— AdaBoost

0.750 { —e— SVM

5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size

Figure 56

Figure 57 shows the training and Figure 58 the testing time of each model.
The training time of the SVM explode with increased training set sizes,
highlighting the fact that the optimization steps required become increasingly
complex as the amount of training data is increased. Moreover, when training
time is of significant importance and training sets are large, SVM’s may not be
appropriate model selections.

Testing times for KNN far exceed those seen in other algorithms and
grows linearly with the amount of training data. Such occurs because
computing differences between datapoints is done at testing time; and with
100,000 entries many distance computations need to be performed at runtime.
Moreover, when testing time is of significant importance and datasets are
large, KNN may not be an appropriate algorithm.

With the goal of predicting whether an NFL play is a pass or a run, a
model can be trained in advance and thus train time is not a constraint.
However, for the model to be decision useful, a prediction has to be made
before a team runs a play; thus, query time is extremely important. Thus,
KNN is likely impractical for the given problem. The performance of
Decision Trees, AdaBoost and Neural Networks were all similar in terms of

accuracies and query time. Any one or a combination of all these models are
appropriate to predict NFL plays.

Fitting Time of Optimized Algos

70 4 —®— KNN
®— Neural Network
—e— Decision Tree
—&— AdaBoost
~o— SVM
v
E
S
o
c
£ 30
i
20
10
0
5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size
Figure 57
Testing Time of Optimized Algos
—o— KNN
40 #~ Neural Network
—&— Decision Tree
—e— AdaBoost
p 301 SWM
E
£
o
£ 2
&
&
10
0{& 4 *r— o —¢ 4 4 * . 4 ®

5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size

Figure 58

V. CONCLUSION

Based on the performance of each classifier on the two datasets, it’s clear
that different models may be preferred in different situations. The appropriate
model to choose is highly dependent on the size and amount of noise in the
dataset. Training and testing constraints may also be significant factors in the
model selection process. When modeling data with many outliers, all
classifiers perform relatively poorly, however KNN and AdaBoost do a
particularly poor job modeling noisy data. From our experiments, Decision
Trees are most robust to noisy data however still provide poor performance.
Moreover, when working with a noisy dataset, the best solution may be to
collect more data.

When few outliers exist, each classifier performs significantly better. In
large datasets with relatively little noise, KNN performs better, but testing time
can be slow. Both training and testing of an SVM can be slow on large
datasets. In addition, training poses significant risk that the model doesn’t
converge leading to inconsistent accuracy scores between validation and test
sets. Thus, additional precaution is necessary when training an SVM with
large amounts of data. Decision Trees, AdaBoost and Neural Networks all
perform well on datasets with these characteristics and can be trained and
queried much more efficiently.

REFERENCES

[1] Crabtree, T. (2020). NFL Scores and Betting Data.
le.com/tobycrabtree/nfl-scores-and-betting-data

Retrieved from
https://www.ka
[2] Horowitz, M. (2018. Detailed NFL Play-by-Play Data 2009-2018. Retrieved from
lay2009t02016

https://www.kaggle.com/maxhorowitz/nflplayb:

[3] Pedregosa, F (2011) Scikit-learn: Machine Learning in Python, pp. 2825-2830
[4] Chollet, F. (2015) keras, GitHub. https://github.com/fchollet/keras

[5] Sarle, W. (2001, May 21). Al FAQ/neural Nets Index. Retrieved September 20, 2020, from
http://www.faqgs.org/faqs/ai-fag/neural-nets/

