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I. INTRODUCTION 
 Optimization algorithms seek to find a set of inputs that maximize 
or minimize the value of a given objective function.  These techniques 
are particularly useful when objective functions are complex, 
multidimension, or lack a closed form solution.  Randomized 
optimization methods make repeated random steps to incrementally 
improve a solution.  Unlike gradient-based optimization methods, 
randomized optimization techniques can be applied to discontinuous, 
non-differentiable objective functions and thus are applicable to many 
more domains.  This paper explores several toy examples of 
discontinuous objective functions to compare the performance of 
popular randomized optimization algorithms.  In particular, we look at 
Random Hill Climbing (RHC), Simulated Annealing (SA), Genetic 
Algorithms (GA) and Mutual-Information-Maximizing Input 
Clustering (MIMIC) to identify the types of problems in which each of 
these algorithms excel.  Further, the hyperparameters of each algorithm 
will be altered to identify their effects on objective function 
optimization and run time.  Finally, we will apply RHC, SA and GA to 
a continuous objective function—particularly the loss function of the 
Neural Network (NN) used in Assignment 1—and compare their 
performance to gradient decent.  We will then comment on when 
randomized optimization algorithms may be preferred to gradient-
based methods in continuous domains. 

 

II. KNAPSACK PROBLEM 
We first consider a problem with complex interdependencies 

between variables.  Given a set of item values and corresponding 
weights, the goal of the Knapsack problem is to identify the 
combination of items that maximizes value subject to a limit on the 
weight of the knapsack.  The fitness function for this problem is 
expressed in (1). 
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A vector of 40 weights and corresponding values was randomly 
generated, and the total weight of the knapsack was limited to 75% of 
the sum of the weight vector.  Finally, the maximum number of any 
particular item that can be included in the knapsack is 3.  RHC, SA, 
GA and MIMIC were used to identify the allocation of items that 
maximizes the value of the knapsack.   
 

A. Random Hill Climbing 
RHC with 10 random restarts and 500 iterations per restart was 

first used to optimize the fitness function.  Figure 1 shows, the fitness 
scores from each hill climbing episode.  As can be seen, the fitness 
scores are quick to converge in each restart. Since RHC attempts to 
identify a better solution by evaluating the fitness scores of 
neighboring states, these plateaus indicate a local maximum was 

found with respect to the neighbors set.  Further since, the algorithm 
stabilizes to a different value on each restart, it is clear that the 
problem has many local optima.  

 
        Figure 1 

Figure 2 plots the fitness scores with respect to iteration for the 7th 
restart of the algorithm which resulted in the most valuable knapsack 
of 752.  We note that the resulting graph is monotonic, highlighting 
the fact that RHC only accepts answers that improve the current best 
solution. 

 
          Figure 2 

 

B. Simulated Annealing 
Unlike RHC, SA can accept a candidate solution that is worse 

than the current best solution.  While an improvement over the current 
solution is always exploited, SA accepts inferior answers according to 
the probability function defined in (2) where 𝑥! is the state being 
evaluated, x is the current state and T is the temperature.  From the 
equation it’s important to note that with larger temperatures the 
algorithm is encouraged to explore the search space and take 
suboptimal steps while temperatures closer to 0 encourage the 
algorithm to only take steps that improve the fitness function.  The 
hope is that slowly decaying the temperature will allow the algorithm 
to take steps away from a local maximum and eventually settle on the 
global optimum (or at least a better local optimum). 
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Moreover, SA is highly sensitive to the value and decay schedule of 
the temperature parameter.  Grid search was used to identify the 



optimal initial temperature, geometric decay speed and minimum 
temperature for the Knapsack problem and a plot of the fitness scores 
achieved by varying these constraints is shown in Figure 2.  The 
initial temperature, decay speed and minimum temperature that 
resulted in the best fitness score were 1.0, 0.9 and 0.001 respectively.  
The best decay speed of 0.9 is rather quick and indicates that the 
temperature will reach its minimum value after only 66 iterations 
(0. 9"" < 0.001).  This low optimum decay speed indicates that 
exploring the search space isn’t very beneficial.  This is likely due to 
existence of many local optima and their proximity with each other.  
For example, given a local optimum, a second local optimum can be 
found by replacing a knapsack item with value v, with another item of 
equal weight but value 2v.  In this example, the two knapsacks would 
be nearly identical (differing only by two items) and their values 
would be different by v.  Such demonstrates the close proximity of 
many local optima.  And, because of this relative closeness, randomly 
exploring may inadvertently result in the algorithm getting stuck in an 
inferior local optimum.  Moreover, a quick decay schedule makes 
sense as it will cause SA to act more greedily and take fewer 
potentially detrimental exploration steps. 
 

 
       Figure 3 

 

C. Genetic Algorithms 
GA were next used to value the knapsack; both the population 

size and mutation probability were specifically tuned for the problem.  
The population size parameter defines the number of candidate 
solutions the algorithm considers at each iteration for mutation and 
cross over.  With larger populations, more candidate solutions are 
generated, resulting in more fitness function evaluations and longer 
runtimes.  Increased population size, however, often results in 
improved fitness scores as with more candidate solutions, the 
probability of a favorable cross-over or mutation event is larger.  The 
mutation probability parameter adjusts the probability by which a 
random element in the state vector is changed.  Larger mutation 
probabilities should enable more exploration at the expense of 
potentially degrading the natural improvement of the population.  
Figure 4 shows the fitness scores achieved by GA with varying 
population sizes and mutation probabilities. 

 
                   Figure 4 

The best population size and mutation probability were found 
using grid search and determined to be 50 and 20% respectively.  A 
surprising note from Figure 4 is that smaller populations appear to 
outperform larger ones. While, larger population sizes enable for 
more candidate solutions, better performance of larger populations 
isn’t guaranteed.  If smaller populations are more diverse, for example 
they can outperform.  In our experiment however, population 
members were initialized randomly and thus the anomaly in Figure 4 
is likely due to chance; either the smaller populations were randomly 
more diverse or had more favorable mutations than larger 
populations. 

 

D. MIMIC 
Grid search was used to optimize the population size and keep 

percentage of the MIMIC algorithm on the Knapsack problem.  It was 
found that a population of 100 and a keep percentage of 30% 
optimized the algorithms performance.  Figure  5 shows the fitness 
scores from MIMIC using several different pairs of these parameters.  
From the figure, larger population sizes and keep percentages result in 
larger fitness scores.  This makes sense as larger values for these 
parameters should result in more accurate estimations of 𝑃(𝑥)#! .  
Further in problems with complex structures where elements in the 
state vector are all interrelated, estimating this distribution correctly is 
extremely valuable.   

 

 
                   Figure 5 

 

E. Algorithm Comparison 
Figure 6 shows a comparison of all the optimized algorithms in 

terms of fitness score per iteration and Figure 7 shows a comparison 
of each algorithm in terms of fitness score per function evaluation.  
Evaluating each algorithms performance on iterations alone is clearly 
biased as MIIMC and GA can make hundreds of function evaluations 
in a single iteration.  Moreover, comparing the number of function 
evaluations provides a better picture of resource utilization.   

Overall, the optimized GA produces the largest fitness score at 
any given iteration and function evaluation. This likely occurs 
because the Knapsack problem can be broken down into several 
smaller optimization problems.  Maximizing the number of high value 
to weight ratios, for example is one subspace where initial 
optimization is important.  GA enables for the optimization of 
independent subspaces and thus is well suited for this problem. 



 
          Figure 6 

 

 
                 Figure 7 

The run time for each algorithm is shown in Figure 8.  As can be 
seen, MIMIC and GA take considerably longer than both RHC and 
SA which is expected since both these algorithms are making 
hundreds of function evaluation calls within each iteration. In 
addition, MIMIC is sampling from the distribution 𝑃(𝑥)#! at each 
iteration thus requiring additional time and resources. 

 

 
               Figure 8 

The performance of each algorithm was next evaluated with 
respect to varying problem sizes.  All algorithms were given 2,000 
function evaluations to solve the problem and the best fitness score 
for each algorithm is plotted with respect to problem size in Figure 9.  
As can be seen from the chart GA outperforms the other algorithms 
irrespective of problem size.  Interestingly, however, as problem size 
increases, MIMIC’s performance shows relative improvement over 
RHC and SA.  This is likely due to the increased structural 
dependencies between state vector inputs as problem size is increased.  
MIMIC is able to capture some of this structure, whereas RHC and 
SA are not; these algorithms are still randomly modifying the state 
vector which becomes increasingly difficult as the size of the state 
space increases. 

 

 
         Figure 9 

 

III. ONE MAX PROBLEM 
We next consider a much simpler model with no 

interdependencies between state vector elements.  The One Max 
fitness function returns a score equal to the sum of all the elements in 
the state vector and is defined in (3). 
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RHC, SA, GA and MIMIC were each used to optimize a state vector 
of size 200 where each element in the vector can take values from 0 to 
10.  RHC and SA were given 1,000 iterations to solve the problem, 
while GA and MIMIC were given 100 iterations. 
 

A. Random Hill Climbing 
RHC with 10 random restarts and 100 iterations per restart found 

a state vector with a fitness score of 472.  The fitness function for all 
10 episodes and the best episode are shown in Figures 10 and 11 
respectively.  Unlike in the Knapsack problem, none of the restarts 
reaches a plateau; this is also apparent in Figure 11 which shows the 
fitness score increasing monotonically.  This behavior is due to the 
existence of a single local optimum in the One Max problem.  
Moreover, the global maximum or a better solution can always be 
found by evaluating every neighboring state vector.  Thus, with 
infinite iterations, RHC is guaranteed to converge to the global 
maximum in this problem. 

 

 
              Figure 10 



 
               Figure 11 

 

B. Simulated Annealing 
A SA algorithm was tuned using grid search to identify the optimal 

initial temperature, decay rate and minimum temperature for the One 
Max problem.  These values were determined to be 0.5, 0.5 and 0.001 
respectively.  Figure 12 compares the fitness scores achieved using 
several different initializations, decays and minimum thresholds for the 
temperature parameter.  Given there’s no local maxima, there is little 
value in exploring suboptimal states as such will only lead to taking 
more steps away from the global maximum and thus slower 
convergence.  Always exploiting a solution that is an improvement over 
the current solution should lead to guaranteed convergence in the least 
amount of time.  Moreover, lower initial temperature values and faster 
decay speeds should outperform, which is consistent with Figure 12.  

 

 
                Figure 12 

 

C. Genetic Algorithms 
The optimal population size and mutation probabilities for a GA 

on the given One Max fitness function were found to be 100 and 10% 
respectively.  Figure 13 shows the performance of several population 
sizes and mutation probability pairs.  An interesting note is that 
smaller mutation probabilities appeared to outperform larger ones.  
This indicates that exploration isn’t extremely valuable and that the 

global optimum may already be found using crossover within the 
existing population. 

 

 
           Figure 13 

 

D. MIMIC 
A Mimic algorithm was next carefully parameterized to maximize 

the One Max function.  The optimal population size and keep 
percentage were found to be 200 and 30% respectively.  Figure 14 
shows the performance of MIMIC with respect to varying population 
sizes and keep percentages and indicates that larger population sizes 
and keep percentages outperform smaller ones.  While larger values 
for these parameters certainly enable more accurate probability 
distribution calculations of 𝑃(𝑥)#, they also require more function 
evaluations, computational resources and time.  

 

 
           Figure 14 

 

E. Algorithm Comparison 
A comparison of the fitness scores achieved at each iteration for 

each algorithm is shown in Figure 15.  As can be seen, MIMIC 
appears to outperform, however, this is simply due to the fact that 
MIMIC is making many function evaluations within each iteration.   
 

 
    Figure 15 

        Figure 16 shows a comparison of the algorithms when compared 
in terms of fitness scores per function evaluation.  This chart creates a 



fairer comparison amongst the algorithms as it adjusts for the 
computational resources used by each algorithm.  When comparing 
algorithms based on resource utilization, SA performs the best.  Since 
there is little structure in the problem and each state vector element 
needs to be optimized independently, using an algorithm like MIMIC 
to model structure and keep track of probability distributions is a 
wasteful use of time (as shown in Figure (17)) and resources.  In 
contrast, greedily exploiting favorable neighboring states works well 
in problems with a single global maximum (and no local maxima) and 
is guaranteed to converge with infinite iterations.  Thus, SA with a 
quick temperature decay schedule is appropriate for this problem.   
 

 
        Figure 16 

 

 
        Figure 17 

We finally compare the performance of each algorithm in 
optimizing the One Max function with respect to the size of the state 
vector.  State vectors of size 100, 250, 500, 750 and 1,000 were 
tested.  Each algorithm was allowed 20,000 function evaluations and 
the max fitness score achieved with respect to problem size is shown 
in Figure 18.  As can be seen, SA appears to show more dominant 
performance with larger problem sizes.  In addition, we see that with 
larger problems, MIMIC’s performance degrades.  This makes sense 
as with larger problem sizes the algorithm wastes more effort trying to 
model structure.   

 

 
          Figure 18 

IV. FLIP FLOP PROBLEM 
The Flip Flop fitness function is more complex than One Max, 

however, has less structural dependencies than the Knapsack problem.  
The Flip Flop fitness function returns the count of consecutive pairs 
〈𝑥$ , 𝑥$%&〉 in the state vector that are different.  There is thus a chain 
dependency structure in the problem whereby the best value for any 
element in the bit string is dependent only on its immediate 
predecessor.  RHC, SA, GA and MIMIC were each used to model this 
dependency structure on a problem of size 1,000. 

 

A. Random Hill Climbing 
Figure 19 shows the fitness scores for RHC climbing with 10 

random restarts and 2,000 iterations per restart.  The optimal value 
was found on the 2nd  restart which produced a fitness score of 827; 
the fitness score of each iteration for this restart is shown in Figure 
20.  In Figure 19 we note that none of the restarts completely reach a 
plateau and converge to a local optimum.  This indicates more 
iterations in each restart would likely lead to better fitness scores.  
This relationship can be seen more clearly in Figure 20; with more 
iterations the algorithm appears to be increasing slowly and has yet to 
completely level off.  Another note is that all restarts started and 
ended at roughly the same fitness score, which potentially indicates 
the existence of fewer local optima. 

 

 
             Figure 19 

 
              Figure 20 

 

B. Simulated Annealing 
SA was next used to maximize the Flip Flop function.  Grid 

search was used to identify the optimal initial temperature, decay rate 
and minimum temperature of the algorithm.  These values were 
determined to be 0.9, 0.999 and 0.001 respectively.  Figure 21 
compares the fitness scores achieved using several initializations, 
decays and minimum thresholds for the temperature parameter.  From 
the chart, it appears that higher decay rates outperform lower ones.  
This makes sense as keeping the temperature elevated will enable for 
more exploration.  And in large search spaces, with few local optima, 



exploration is unlikely to run the risk of the algorithm getting stuck in 
an inferior local optimum as we saw in the Knapsack problem. 

 

 
            Figure 21 

 

C. Genetic Algorithms 
Grid search was used to find the best population and mutation 

probability for a GA to maximize the objective function.  These 
values were found to be 200 and 20% respectively.  Figure 22 plots 
several combinations of population size and mutation probability 
parameters.  From the chart larger population sizes and mutation 
probabilities outperform lower ones.  While larger populations should 
be expected to outperform, the superior performance of larger 
mutation probabilities is not a given.  Considering the implemented 
GA used one-point crossover, these results make sense as it’s unlikely 
the case that the bit string selected from each parent is optimal (or 
even close to optimal).  For example, if the splitting point is at the 
500th element in the state vector, the probability that the first 500 bits 
from parent one is alternating is essentially 0 (0.5'(().  Thus, the need 
for exploration and mutation is very reasonable in the scope of this 
problem.   

 

 
           Figure 22 

 

D. MIMIC 
We finally optimize the Flip Flop problem using MIMC.  The best 

population size and keep percentage were found using grid search and 
determined to be 200 and 30% respectively.  Figure 23 shows the 
performance of several different population sizes and keep percentages.  
As can be seen, larger populations and keep percentages appear more 
appropriate than smaller ones, which is likely due to the fact that larger 
values for these parameters will enable the algorithm to better model 
the problem’s chain dependency structure. 

 

 
           Figure 23 

 

E. Algorithm Comparison 
Figure 24 shows a comparison of the performance of all the 

models in terms of fitness score per iteration.  As can be seen, MIMIC 
appears to outperform suggesting the algorithm is able to 
appropriately model the problem’s structure thus allowing for more 
efficient optimization.  Creating this dependency structure, however, 
requires more computational resources than the other algorhitms.  As 
seen in Figure 25, MIMC takes considerably more time than RHC, 
SA and GA.  This is due to the fact that MIMIC requires many 
function evaluations and the sampling from a candidate distribution 
with each iteration.   

 
         Figure 24 

 
        Figure 25 

To compare the algorithms on a level playing field, Figure 26 
shows the fitness scores achieved by each algorithm in terms of 
function evaluations.  MIMIC still outperforms the remaining 
algorithms but RHC and SA achieve significant improvements with 
these additional function evaluations. 

 



 
           Figure 26 

The performance of each model was finally compared to varying 
problem sizes.  Five problem sizes ranging from 100 to 1,000 are 
considered.  RHC and SA were given 2,000 iterations to converge 
while MIMIC and GA were given 200.  Figure 27 shows that both 
MIMC and GA achieve larger outperformance over RHC and SA 
with larger problem sizes.  This indicates that the guess and check 
strategies of RHC and SA are less dominant and reliable as the state 
vector size increases.  With extremely large problem sizes, these 
strategies may be infeasible altogether.  Moreover, with larger state 
spaces, modeling structure is more valuable and results in more 
efficient optimization. 

 

 
            Figure 27 

 

V. NEURAL NETWORK WEIGHT OPTIMIZATION 
RHC, SA and GA were next used in a continuous domain to 

optimize the weights of the Neural Network (NN) used in Assignment 
1.  The NN in Assignment 1 was used to predict NFL game lines with 
a target accuracy of 52.4%;  since Vegas spread bets pay -110 
(meaning a $110 bet wins $100), an average prediction accuracy of 
52.4% is necessary to break even.  The raw dataset contains NFL 
scores, game lines and weather conditions but additional feature 
engineering and preprocessing were done to extract additional 
explanatory variables.  In total, 34 continuous features were fed into 
the NN and in Assignment 1 it was determined that the optimum NN 
architecture consisted of a single hidden layer of size 3 and used a 
sigmoid activation function.  Moreover, we will use this NN 
architecture when tuning the weights using RHC, SA and GA.  We 
will finally compare each to the performance of gradient decent. 

 

A. Random Hill Climbing 
RHC with 10 random restarts was given 2,000 iterations to 

minimize the loss function on the NN.  Random Search with 100 
attempts was used to find the optimal step size for the algorithm.  The 
step size parameter determines the amount by which weights will be 
changed on each iteration.  All step sizes from 0 to 0.2 were 
considered.  It was found that a step size of 0.113 minimized in-

sample loss.  The loss curve produced by RHC with this step size is 
shown in Figure 28.  The curve shows favorable properties of gradual 
decline and appears to be converging. 

 

 
                Figure 28 

Predictions were next made out-of-sample with the optimized 
classifier.  Figure 29 plots the training and testing accuracy curves for 
the trained NN; since the dataset is balanced, the accuracy measure 
used is simply the percentage of correct classifications.  Both training 
and testing accuracies increase monotonically up to 1,000 iterations, 
however after 1,000 iterations, the two series deviate.  This 
divergence between train and test accuracies indicates overfitting.  
Early stopping after 1,000 iterations may therefore be appropriate to 
reduce overfitting and improve generalization ability. 

 

 
         Figure 29 

The confusion matrix for the out-of-sample predictions is shown in 
Figure 30.  The optimized NN achieved an overall accuracy of 50.4% 
when trained using RHC.  The classifier predicts a team will cover the 
spread around 60% of the time and as a result produces many false 
positives.  These false positives, however, aren’t a big issue in the 
scope of the problem; when betting Vegas lines, we are more 
concerned about overall accuracy and are indifferent to both false 
positives and false negatives.   
 

 
            Figure 30 



B. Simulated Annealing 
SA was next used to minimize the loss of our NN and was given 

2,000 iterations.  Random search was used to identify the optimum 
starting temperature, decay rate, minimum temperature and step size 
which were found to be 0.899, 0.902, 0.007 and 0.145 respectively.  
The loss curve for the optimized NN with these parameters is shown 
in Figure 31.  While the curve exhibits a general downward trend, 
there are several periods where the loss spikes in value.  These 
increases in loss are expected as with high temperatures the algorithm 
will act more like a random walk and potentially take steps away from 
the local minimum in attempt to find a better overall solution.  With 
more iterations (over 1,300) the temperature cools and we see a more 
monotonic decrease in the loss curve.  SA, however, doesn’t appear to 
have converged to an optimum set of weights even after 2,000 
iterations. 

 
                    Figure 31 

The NN optimized using SA was next tested in and out-of-
sample. Figure 32 shows the training and testing accuracies of the 
optimized classifier.  While training accuracy sees modest 
improvement with more iterations, test accuracy improves 
significantly.  The test accuracy finishes around 54% which is much 
higher than the test accuracy observed form RHC.  The training 
accuracy, however, is lower than that of RHC, which may be another 
indication of RHC overfitting.  Overall, with less overfitting than 
RHC, the NN with weights trained through SA appears to have better 
generalization ability. 
 

 
          Figure 32 

The confusion matrix for the predictions made by the classifier 
are shown in Figure 33.  As can be seen the algorithm predicts a team 
will fail to cover the spread around 2 times more frequently than 
predicting a team will cover.  However, in both cases, the algorithm is 
quite efficient.  When predicting a team will fail to cover it is correct 
54.3% of the time and when it predicts a team will cover it is correct 
53.7% of the time.  Both of these accuracies exceed the target 
accuracy of 52.4% which is necessary to break-even on Vegas spread 
bets.  More test data however is still necessary to ensure these results 
aren’t spurious and due to chance. 

 

 
              Figure 333 

 

C. Genetic Algorithms 
A GA was given 200 iterations to converge and was used to tune 

the weights of the NN.  100 attempts of random search were used, and 
it was found that the population size, mutation probability and step 
size that simultaneously minimize loss were 66, 7.66% and 0.0193 
respectively.  Figure 34 shows the loss curve of a NN with weights 
trained using these parameters.  While the loss curve exhibits a 
general downward trend, it’s also discontinuous and resembles a step 
function.  The flat regions of the loss curve indicate periods in which 
cross-over and mutation were unable to improve on the current best 
solution.  For example, from 250 iterations to 750 iterations, the same 
optimal solution for the algorithm was maintained and thus the loss 
remained unchanged.  After 2,000 iterations, the loss remains orders 
of magnitude higher than the previous algorithms suggesting either 
slow convergence of the algorithm or that GA is converging on an 
inferior local minimum. 

 
                    Figure 34 

The NN optimized with GA, was tested out-of-sample to evaluate 
its ability to generalize.  Figure 35 shows the train and test accuracies 
produced by the NN on different iterations.  The test accuracy of the 
algorithm dominates the train accuracy at any given iteration, which 
indicates underfitting.  However, even with underfitting, the NN as 
able to generalize with accuracy comparable to RHC.  This suggests 
there’s likely a lot of noise in the dataset; thus, overfitting to the 
training set will result in overfitting to the noise and a model with 
poor generalization ability. 

 



 
      Figure 35 

Figure 36 shows the confusion matrix of the predictions made by 
the classifier.  The final model achieved an overall accuracy of 
50.8%.  Additionally, the algorithm produced many false positives 
and when predicating a team will cover a spread, it was wrong with 
these predictions more than half the time.  When predicting a team 
will fail to cover however, the model does much better, producing an 
accuracy of 52.8%. 

 
               Figure 36 

 

D. Gradient Descent 
We finally analyze the performance of a NN with weights trained 

using gradient decent.  Using random search, the learning rate that 
optimizes in-sample training accuracy was found to be 0.0047.  The 
loss curve for training of our NN using this learning rate is shown in 
Figure 37.  As can be seen, the loss curve converges smoothly in 
around 1,100 iterations, much quicker than all of the previous 
algorithms.  Additionally, the loss curve contains fewer kinks and is 
able to efficiently identify a local minimum.  
 

 
                         Figure 37 

The NN was next tested out-of-sample.  Figure 38 shows the 
training and testing accuracies at each iteration.  Both training and 
testing accuracy appear to increase up until 200 iterations.  At this 
point, the algorithm begins to overfit as seen by the increasing 
training accuracy and decreasing testing accuracy.  This overfitting 

may be curtailed by early stopping.  Another important note in Figure 
38 is that both training and testing curves plateau after 1,100 
iterations;  this indication that the algorithm converged to a local 
minimum and  thus, the weights of the NN don’t change as iterations 
are increased beyond 1,100. 

 

 
            Figure 38 

The confusion matrix for gradient descent is shown in Figure 39.  
The model performs reasonably and achieves an accuracy over 51%.  
In addition, the model appears to produce more accurate results when 
predicting a team won’t cover; it is correct 54.1% of the time when 
making these predictions.  Since only 52.4% accuracy is necessary to 
break even, one potential strategy may be to only bet when the model 
predicts a team won’t cover.  More data, however, would still be 
useful to confirm the relative efficiency the algorithm has in 
predicting true negatives. 

 
                   Figure 39 

 

E. Algorithm Comparison 
Figure 40 shows a comparison of the loss curves produced from 

RHC, SA and gradient descent.  The loss curve for GA wasn’t 
included in this plot as it was orders of magnitude higher than the 
other algorithms.  From the loss curves we note that after 2,000 
iterations, all algorithms had a similar loss value of around 0.70.  
RHC and SA, however, never completely converge and have larger 
loss values in early iterations.  

Gradient descent produces the smoothest most consistent loss 
curve.  This makes sense since gradient descent is always adjusting 
the weights in the direction of steepest descent; that is, the algorithm 
simultaneously adjusts all weights such that the reduction in the cost 
function is maximized.  In contrast, RHC and SA rely on randomness 
to adjust the weights.  RHC randomly makes adjustments and greedily 
accepts them if they reduce loss and SA similarly makes random 
adjustments but accepts candidate solutions less greedily.  Further, 
while gradient descent uses backpropagation to simultaneously tune 
all weights, RHC and SA consider modifying only one weight with 
each iteration.  Moreover, by calculating gradients and simultaneously 
modifying all weights, gradient descent achieves a quicker and more 
reliable convergence path to a local minimum. 



 
                         Figure 40 

The training time for each iteration is shown in Figure 41; GA 
again was excluded from the comparison as the algorithm produced 
train times significantly larger than the other algorithms.  While RHC 
appears to be much slower than SA and gradient descent, this is 
because 10 restarts with 2,000 iterations per restart were used.  
Moreover, the algorithm completed 20,000 iterations in total, while 
SA and gradient descent only finished 2,000 iterations; this explains 
why RHC takes roughly 10 times longer than SA.  After adjusting for 
the number of iterations, RHC, SA and gradient descent all complete 
in a similar amount of time.  Gradient descent takes a bit longer than 
the other two algorithms due to the calculation of the gradient at each 
iteration.  While this speedup is marginal, our NN only contains a 
single hidden layer of size 3.  Increasing the size of the network 
would likely increase gradient descent’s train time as more weights 
would need to be tuned in each iteration and thus partial derivative 
calculations. 

 

 
                       Figure 41 

While gradient descent is efficient in finding a local minimum 
and does so in a reasonable amount of time, test accuracy also needs 
to be considered.  Figure 42 shows a comparison of test accuracy for 
each algorithm.  As can be seen, SA performs the best achieving an 
accuracy score of 54%.  This likely occurs due to the fact that the 
other algorithms are overfitting.  Gradient descent and RHC in 
particular both aggressively search for the global minimum.  Gradient 
descent always takes greedy steps in the direction of steepest descent 
while RHC will only accept a candidate solution that is an 
improvement over the current solution.  The greediness of each of 
these algorithms results in overfitting to the training set and a model 
that doesn’t generalize well out-of-sample.  While SA has a choppy 
loss function, it also exhibits less overfitting.  Moreover, when using 
gradient descent or RHC to train NN weights on a noisy dataset, early 
stopping should be considered to prevent overfitting as such may 
impair the generalization ability of the network.   

 

 
       Figure 42 

 

VI. CONCLUSION 
Based on the performance of each randomized optimization 

algorithm, it’s clear that different algorithms may perform better on 
different problems.  For simple optimization problems with little 
structural dependencies, SA is fast and efficient.  SA’s performance, 
however, appears inversely related to the complexity of the problem; 
as problems become more complex with more interdependencies and 
local minimum, the algorithm’s performance deteriorates.  Moreover, 
with more complex problems, either MIMC or GA should be 
considered.  MIMC specifically attempts to model structure using 
dependency trees and thus is most appropriate when variables exhibit 
conditional independence given another variable.  This was present in 
the Flip Flop problem where the best value for 𝑥$%& is conditionally 
independent of all values except 𝑥$.  GA may also be used to model 
complex relationships and is most useful when a problem can be 
broken down into several smaller and independent optimization 
problems.   

While RHC, SA and GA are discrete optimization techniques, 
they can be applied to continuous domains by considering discrete 
step sizes when modifying continuous variables.  When applied to the 
continuous domain of adjusting NN weights, gradient descent was 
most efficient identifying a local minimum.  By adjusting all weights 
simultaneously in the direction that most reduces the loss function, 
gradient descent was able to converge on a local minimum loss 
comparable to that found by RHC and SA in around half as many 
iterations.  While gradient descent is efficient and guaranteed to find a 
local minimum, it is also susceptible to overfitting, which is a 
particularly important concern when working with noisy datasets.  By 
greedily tuning weights to minimize in-sample loss, the NN as a 
whole may lose its ability to generalize out-of-sample.  While the 
addition of more data may reduce this overfitting, collecting more 
data often is not feasible.  Moreover, with limited data, early stopping 
or training network weights with less greedy optimization algorithms 
such as SA or GA may reduce overfitting and improve generalization 
ability.   
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