
Project 2: Randomized Optimization

Scott Merrill
smerrill7@gatech.edu

I. INTRODUCTION
 Optimization algorithms seek to find a set of inputs that maximize
or minimize the value of a given objective function. These techniques
are particularly useful when objective functions are complex,
multidimension, or lack a closed form solution. Randomized
optimization methods make repeated random steps to incrementally
improve a solution. Unlike gradient-based optimization methods,
randomized optimization techniques can be applied to discontinuous,
non-differentiable objective functions and thus are applicable to many
more domains. This paper explores several toy examples of
discontinuous objective functions to compare the performance of
popular randomized optimization algorithms. In particular, we look at
Random Hill Climbing (RHC), Simulated Annealing (SA), Genetic
Algorithms (GA) and Mutual-Information-Maximizing Input
Clustering (MIMIC) to identify the types of problems in which each of
these algorithms excel. Further, the hyperparameters of each algorithm
will be altered to identify their effects on objective function
optimization and run time. Finally, we will apply RHC, SA and GA to
a continuous objective function—particularly the loss function of the
Neural Network (NN) used in Assignment 1—and compare their
performance to gradient decent. We will then comment on when
randomized optimization algorithms may be preferred to gradient-
based methods in continuous domains.

II. KNAPSACK PROBLEM
We first consider a problem with complex interdependencies

between variables. Given a set of item values and corresponding
weights, the goal of the Knapsack problem is to identify the
combination of items that maximizes value subject to a limit on the
weight of the knapsack. The fitness function for this problem is
expressed in (1).

𝐾𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑥) =

⎩
⎪
⎨

⎪
⎧0𝑣!𝑥! ,			𝑖𝑓	
"#$

!%&

0𝑤!𝑥! , ≤ 𝑊	
"#$

!%&

0, 𝑖𝑓	0𝑤!𝑥! , > 𝑊	
"#$

!%&

(1)

A vector of 40 weights and corresponding values was randomly
generated, and the total weight of the knapsack was limited to 75% of
the sum of the weight vector. Finally, the maximum number of any
particular item that can be included in the knapsack is 3. RHC, SA,
GA and MIMIC were used to identify the allocation of items that
maximizes the value of the knapsack.

A. Random Hill Climbing
RHC with 10 random restarts and 500 iterations per restart was

first used to optimize the fitness function. Figure 1 shows, the fitness
scores from each hill climbing episode. As can be seen, the fitness
scores are quick to converge in each restart. Since RHC attempts to
identify a better solution by evaluating the fitness scores of
neighboring states, these plateaus indicate a local maximum was

found with respect to the neighbors set. Further since, the algorithm
stabilizes to a different value on each restart, it is clear that the
problem has many local optima.

 Figure 1

Figure 2 plots the fitness scores with respect to iteration for the 7th
restart of the algorithm which resulted in the most valuable knapsack
of 752. We note that the resulting graph is monotonic, highlighting
the fact that RHC only accepts answers that improve the current best
solution.

 Figure 2

B. Simulated Annealing
Unlike RHC, SA can accept a candidate solution that is worse

than the current best solution. While an improvement over the current
solution is always exploited, SA accepts inferior answers according to
the probability function defined in (2) where 𝑥! is the state being
evaluated, x is the current state and T is the temperature. From the
equation it’s important to note that with larger temperatures the
algorithm is encouraged to explore the search space and take
suboptimal steps while temperatures closer to 0 encourage the
algorithm to only take steps that improve the fitness function. The
hope is that slowly decaying the temperature will allow the algorithm
to take steps away from a local maximum and eventually settle on the
global optimum (or at least a better local optimum).

𝑃(𝑥, 𝑥' , 𝑇) = 	 >
1, 𝑖𝑓	𝑓(𝑥') ≥ 𝑓(𝑥)

𝑒
((*!)#((*)

, , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

Moreover, SA is highly sensitive to the value and decay schedule of
the temperature parameter. Grid search was used to identify the

optimal initial temperature, geometric decay speed and minimum
temperature for the Knapsack problem and a plot of the fitness scores
achieved by varying these constraints is shown in Figure 2. The
initial temperature, decay speed and minimum temperature that
resulted in the best fitness score were 1.0, 0.9 and 0.001 respectively.
The best decay speed of 0.9 is rather quick and indicates that the
temperature will reach its minimum value after only 66 iterations
(0. 9"" < 0.001). This low optimum decay speed indicates that
exploring the search space isn’t very beneficial. This is likely due to
existence of many local optima and their proximity with each other.
For example, given a local optimum, a second local optimum can be
found by replacing a knapsack item with value v, with another item of
equal weight but value 2v. In this example, the two knapsacks would
be nearly identical (differing only by two items) and their values
would be different by v. Such demonstrates the close proximity of
many local optima. And, because of this relative closeness, randomly
exploring may inadvertently result in the algorithm getting stuck in an
inferior local optimum. Moreover, a quick decay schedule makes
sense as it will cause SA to act more greedily and take fewer
potentially detrimental exploration steps.

 Figure 3

C. Genetic Algorithms
GA were next used to value the knapsack; both the population

size and mutation probability were specifically tuned for the problem.
The population size parameter defines the number of candidate
solutions the algorithm considers at each iteration for mutation and
cross over. With larger populations, more candidate solutions are
generated, resulting in more fitness function evaluations and longer
runtimes. Increased population size, however, often results in
improved fitness scores as with more candidate solutions, the
probability of a favorable cross-over or mutation event is larger. The
mutation probability parameter adjusts the probability by which a
random element in the state vector is changed. Larger mutation
probabilities should enable more exploration at the expense of
potentially degrading the natural improvement of the population.
Figure 4 shows the fitness scores achieved by GA with varying
population sizes and mutation probabilities.

 Figure 4

The best population size and mutation probability were found
using grid search and determined to be 50 and 20% respectively. A
surprising note from Figure 4 is that smaller populations appear to
outperform larger ones. While, larger population sizes enable for
more candidate solutions, better performance of larger populations
isn’t guaranteed. If smaller populations are more diverse, for example
they can outperform. In our experiment however, population
members were initialized randomly and thus the anomaly in Figure 4
is likely due to chance; either the smaller populations were randomly
more diverse or had more favorable mutations than larger
populations.

D. MIMIC
Grid search was used to optimize the population size and keep

percentage of the MIMIC algorithm on the Knapsack problem. It was
found that a population of 100 and a keep percentage of 30%
optimized the algorithms performance. Figure 5 shows the fitness
scores from MIMIC using several different pairs of these parameters.
From the figure, larger population sizes and keep percentages result in
larger fitness scores. This makes sense as larger values for these
parameters should result in more accurate estimations of 𝑃(𝑥)#! .
Further in problems with complex structures where elements in the
state vector are all interrelated, estimating this distribution correctly is
extremely valuable.

 Figure 5

E. Algorithm Comparison
Figure 6 shows a comparison of all the optimized algorithms in

terms of fitness score per iteration and Figure 7 shows a comparison
of each algorithm in terms of fitness score per function evaluation.
Evaluating each algorithms performance on iterations alone is clearly
biased as MIIMC and GA can make hundreds of function evaluations
in a single iteration. Moreover, comparing the number of function
evaluations provides a better picture of resource utilization.

Overall, the optimized GA produces the largest fitness score at
any given iteration and function evaluation. This likely occurs
because the Knapsack problem can be broken down into several
smaller optimization problems. Maximizing the number of high value
to weight ratios, for example is one subspace where initial
optimization is important. GA enables for the optimization of
independent subspaces and thus is well suited for this problem.

 Figure 6

 Figure 7

The run time for each algorithm is shown in Figure 8. As can be
seen, MIMIC and GA take considerably longer than both RHC and
SA which is expected since both these algorithms are making
hundreds of function evaluation calls within each iteration. In
addition, MIMIC is sampling from the distribution 𝑃(𝑥)#! at each
iteration thus requiring additional time and resources.

 Figure 8

The performance of each algorithm was next evaluated with
respect to varying problem sizes. All algorithms were given 2,000
function evaluations to solve the problem and the best fitness score
for each algorithm is plotted with respect to problem size in Figure 9.
As can be seen from the chart GA outperforms the other algorithms
irrespective of problem size. Interestingly, however, as problem size
increases, MIMIC’s performance shows relative improvement over
RHC and SA. This is likely due to the increased structural
dependencies between state vector inputs as problem size is increased.
MIMIC is able to capture some of this structure, whereas RHC and
SA are not; these algorithms are still randomly modifying the state
vector which becomes increasingly difficult as the size of the state
space increases.

 Figure 9

III. ONE MAX PROBLEM
We next consider a much simpler model with no

interdependencies between state vector elements. The One Max
fitness function returns a score equal to the sum of all the elements in
the state vector and is defined in (3).

𝑂𝑛𝑒𝑀𝑎𝑥(𝑥) = 	0𝑥!

"#$

!%&

(3)

			
RHC, SA, GA and MIMIC were each used to optimize a state vector
of size 200 where each element in the vector can take values from 0 to
10. RHC and SA were given 1,000 iterations to solve the problem,
while GA and MIMIC were given 100 iterations.

A. Random Hill Climbing
RHC with 10 random restarts and 100 iterations per restart found

a state vector with a fitness score of 472. The fitness function for all
10 episodes and the best episode are shown in Figures 10 and 11
respectively. Unlike in the Knapsack problem, none of the restarts
reaches a plateau; this is also apparent in Figure 11 which shows the
fitness score increasing monotonically. This behavior is due to the
existence of a single local optimum in the One Max problem.
Moreover, the global maximum or a better solution can always be
found by evaluating every neighboring state vector. Thus, with
infinite iterations, RHC is guaranteed to converge to the global
maximum in this problem.

 Figure 10

 Figure 11

B. Simulated Annealing
A SA algorithm was tuned using grid search to identify the optimal

initial temperature, decay rate and minimum temperature for the One
Max problem. These values were determined to be 0.5, 0.5 and 0.001
respectively. Figure 12 compares the fitness scores achieved using
several different initializations, decays and minimum thresholds for the
temperature parameter. Given there’s no local maxima, there is little
value in exploring suboptimal states as such will only lead to taking
more steps away from the global maximum and thus slower
convergence. Always exploiting a solution that is an improvement over
the current solution should lead to guaranteed convergence in the least
amount of time. Moreover, lower initial temperature values and faster
decay speeds should outperform, which is consistent with Figure 12.

 Figure 12

C. Genetic Algorithms
The optimal population size and mutation probabilities for a GA

on the given One Max fitness function were found to be 100 and 10%
respectively. Figure 13 shows the performance of several population
sizes and mutation probability pairs. An interesting note is that
smaller mutation probabilities appeared to outperform larger ones.
This indicates that exploration isn’t extremely valuable and that the

global optimum may already be found using crossover within the
existing population.

 Figure 13

D. MIMIC
A Mimic algorithm was next carefully parameterized to maximize

the One Max function. The optimal population size and keep
percentage were found to be 200 and 30% respectively. Figure 14
shows the performance of MIMIC with respect to varying population
sizes and keep percentages and indicates that larger population sizes
and keep percentages outperform smaller ones. While larger values
for these parameters certainly enable more accurate probability
distribution calculations of 𝑃(𝑥)#, they also require more function
evaluations, computational resources and time.

 Figure 14

E. Algorithm Comparison
A comparison of the fitness scores achieved at each iteration for

each algorithm is shown in Figure 15. As can be seen, MIMIC
appears to outperform, however, this is simply due to the fact that
MIMIC is making many function evaluations within each iteration.

 Figure 15

 Figure 16 shows a comparison of the algorithms when compared
in terms of fitness scores per function evaluation. This chart creates a

fairer comparison amongst the algorithms as it adjusts for the
computational resources used by each algorithm. When comparing
algorithms based on resource utilization, SA performs the best. Since
there is little structure in the problem and each state vector element
needs to be optimized independently, using an algorithm like MIMIC
to model structure and keep track of probability distributions is a
wasteful use of time (as shown in Figure (17)) and resources. In
contrast, greedily exploiting favorable neighboring states works well
in problems with a single global maximum (and no local maxima) and
is guaranteed to converge with infinite iterations. Thus, SA with a
quick temperature decay schedule is appropriate for this problem.

 Figure 16

 Figure 17

We finally compare the performance of each algorithm in
optimizing the One Max function with respect to the size of the state
vector. State vectors of size 100, 250, 500, 750 and 1,000 were
tested. Each algorithm was allowed 20,000 function evaluations and
the max fitness score achieved with respect to problem size is shown
in Figure 18. As can be seen, SA appears to show more dominant
performance with larger problem sizes. In addition, we see that with
larger problems, MIMIC’s performance degrades. This makes sense
as with larger problem sizes the algorithm wastes more effort trying to
model structure.

 Figure 18

IV. FLIP FLOP PROBLEM
The Flip Flop fitness function is more complex than One Max,

however, has less structural dependencies than the Knapsack problem.
The Flip Flop fitness function returns the count of consecutive pairs
〈𝑥$, 𝑥$%&〉 in the state vector that are different. There is thus a chain
dependency structure in the problem whereby the best value for any
element in the bit string is dependent only on its immediate
predecessor. RHC, SA, GA and MIMIC were each used to model this
dependency structure on a problem of size 1,000.

A. Random Hill Climbing
Figure 19 shows the fitness scores for RHC climbing with 10

random restarts and 2,000 iterations per restart. The optimal value
was found on the 2nd restart which produced a fitness score of 827;
the fitness score of each iteration for this restart is shown in Figure
20. In Figure 19 we note that none of the restarts completely reach a
plateau and converge to a local optimum. This indicates more
iterations in each restart would likely lead to better fitness scores.
This relationship can be seen more clearly in Figure 20; with more
iterations the algorithm appears to be increasing slowly and has yet to
completely level off. Another note is that all restarts started and
ended at roughly the same fitness score, which potentially indicates
the existence of fewer local optima.

 Figure 19

 Figure 20

B. Simulated Annealing
SA was next used to maximize the Flip Flop function. Grid

search was used to identify the optimal initial temperature, decay rate
and minimum temperature of the algorithm. These values were
determined to be 0.9, 0.999 and 0.001 respectively. Figure 21
compares the fitness scores achieved using several initializations,
decays and minimum thresholds for the temperature parameter. From
the chart, it appears that higher decay rates outperform lower ones.
This makes sense as keeping the temperature elevated will enable for
more exploration. And in large search spaces, with few local optima,

exploration is unlikely to run the risk of the algorithm getting stuck in
an inferior local optimum as we saw in the Knapsack problem.

 Figure 21

C. Genetic Algorithms
Grid search was used to find the best population and mutation

probability for a GA to maximize the objective function. These
values were found to be 200 and 20% respectively. Figure 22 plots
several combinations of population size and mutation probability
parameters. From the chart larger population sizes and mutation
probabilities outperform lower ones. While larger populations should
be expected to outperform, the superior performance of larger
mutation probabilities is not a given. Considering the implemented
GA used one-point crossover, these results make sense as it’s unlikely
the case that the bit string selected from each parent is optimal (or
even close to optimal). For example, if the splitting point is at the
500th element in the state vector, the probability that the first 500 bits
from parent one is alternating is essentially 0 (0.5'((). Thus, the need
for exploration and mutation is very reasonable in the scope of this
problem.

 Figure 22

D. MIMIC
We finally optimize the Flip Flop problem using MIMC. The best

population size and keep percentage were found using grid search and
determined to be 200 and 30% respectively. Figure 23 shows the
performance of several different population sizes and keep percentages.
As can be seen, larger populations and keep percentages appear more
appropriate than smaller ones, which is likely due to the fact that larger
values for these parameters will enable the algorithm to better model
the problem’s chain dependency structure.

 Figure 23

E. Algorithm Comparison
Figure 24 shows a comparison of the performance of all the

models in terms of fitness score per iteration. As can be seen, MIMIC
appears to outperform suggesting the algorithm is able to
appropriately model the problem’s structure thus allowing for more
efficient optimization. Creating this dependency structure, however,
requires more computational resources than the other algorhitms. As
seen in Figure 25, MIMC takes considerably more time than RHC,
SA and GA. This is due to the fact that MIMIC requires many
function evaluations and the sampling from a candidate distribution
with each iteration.

 Figure 24

 Figure 25

To compare the algorithms on a level playing field, Figure 26
shows the fitness scores achieved by each algorithm in terms of
function evaluations. MIMIC still outperforms the remaining
algorithms but RHC and SA achieve significant improvements with
these additional function evaluations.

 Figure 26

The performance of each model was finally compared to varying
problem sizes. Five problem sizes ranging from 100 to 1,000 are
considered. RHC and SA were given 2,000 iterations to converge
while MIMIC and GA were given 200. Figure 27 shows that both
MIMC and GA achieve larger outperformance over RHC and SA
with larger problem sizes. This indicates that the guess and check
strategies of RHC and SA are less dominant and reliable as the state
vector size increases. With extremely large problem sizes, these
strategies may be infeasible altogether. Moreover, with larger state
spaces, modeling structure is more valuable and results in more
efficient optimization.

 Figure 27

V. NEURAL NETWORK WEIGHT OPTIMIZATION
RHC, SA and GA were next used in a continuous domain to

optimize the weights of the Neural Network (NN) used in Assignment
1. The NN in Assignment 1 was used to predict NFL game lines with
a target accuracy of 52.4%; since Vegas spread bets pay -110
(meaning a $110 bet wins $100), an average prediction accuracy of
52.4% is necessary to break even. The raw dataset contains NFL
scores, game lines and weather conditions but additional feature
engineering and preprocessing were done to extract additional
explanatory variables. In total, 34 continuous features were fed into
the NN and in Assignment 1 it was determined that the optimum NN
architecture consisted of a single hidden layer of size 3 and used a
sigmoid activation function. Moreover, we will use this NN
architecture when tuning the weights using RHC, SA and GA. We
will finally compare each to the performance of gradient decent.

A. Random Hill Climbing
RHC with 10 random restarts was given 2,000 iterations to

minimize the loss function on the NN. Random Search with 100
attempts was used to find the optimal step size for the algorithm. The
step size parameter determines the amount by which weights will be
changed on each iteration. All step sizes from 0 to 0.2 were
considered. It was found that a step size of 0.113 minimized in-

sample loss. The loss curve produced by RHC with this step size is
shown in Figure 28. The curve shows favorable properties of gradual
decline and appears to be converging.

 Figure 28

Predictions were next made out-of-sample with the optimized
classifier. Figure 29 plots the training and testing accuracy curves for
the trained NN; since the dataset is balanced, the accuracy measure
used is simply the percentage of correct classifications. Both training
and testing accuracies increase monotonically up to 1,000 iterations,
however after 1,000 iterations, the two series deviate. This
divergence between train and test accuracies indicates overfitting.
Early stopping after 1,000 iterations may therefore be appropriate to
reduce overfitting and improve generalization ability.

 Figure 29

The confusion matrix for the out-of-sample predictions is shown in
Figure 30. The optimized NN achieved an overall accuracy of 50.4%
when trained using RHC. The classifier predicts a team will cover the
spread around 60% of the time and as a result produces many false
positives. These false positives, however, aren’t a big issue in the
scope of the problem; when betting Vegas lines, we are more
concerned about overall accuracy and are indifferent to both false
positives and false negatives.

 Figure 30

B. Simulated Annealing
SA was next used to minimize the loss of our NN and was given

2,000 iterations. Random search was used to identify the optimum
starting temperature, decay rate, minimum temperature and step size
which were found to be 0.899, 0.902, 0.007 and 0.145 respectively.
The loss curve for the optimized NN with these parameters is shown
in Figure 31. While the curve exhibits a general downward trend,
there are several periods where the loss spikes in value. These
increases in loss are expected as with high temperatures the algorithm
will act more like a random walk and potentially take steps away from
the local minimum in attempt to find a better overall solution. With
more iterations (over 1,300) the temperature cools and we see a more
monotonic decrease in the loss curve. SA, however, doesn’t appear to
have converged to an optimum set of weights even after 2,000
iterations.

 Figure 31

The NN optimized using SA was next tested in and out-of-
sample. Figure 32 shows the training and testing accuracies of the
optimized classifier. While training accuracy sees modest
improvement with more iterations, test accuracy improves
significantly. The test accuracy finishes around 54% which is much
higher than the test accuracy observed form RHC. The training
accuracy, however, is lower than that of RHC, which may be another
indication of RHC overfitting. Overall, with less overfitting than
RHC, the NN with weights trained through SA appears to have better
generalization ability.

 Figure 32

The confusion matrix for the predictions made by the classifier
are shown in Figure 33. As can be seen the algorithm predicts a team
will fail to cover the spread around 2 times more frequently than
predicting a team will cover. However, in both cases, the algorithm is
quite efficient. When predicting a team will fail to cover it is correct
54.3% of the time and when it predicts a team will cover it is correct
53.7% of the time. Both of these accuracies exceed the target
accuracy of 52.4% which is necessary to break-even on Vegas spread
bets. More test data however is still necessary to ensure these results
aren’t spurious and due to chance.

 Figure 333

C. Genetic Algorithms
A GA was given 200 iterations to converge and was used to tune

the weights of the NN. 100 attempts of random search were used, and
it was found that the population size, mutation probability and step
size that simultaneously minimize loss were 66, 7.66% and 0.0193
respectively. Figure 34 shows the loss curve of a NN with weights
trained using these parameters. While the loss curve exhibits a
general downward trend, it’s also discontinuous and resembles a step
function. The flat regions of the loss curve indicate periods in which
cross-over and mutation were unable to improve on the current best
solution. For example, from 250 iterations to 750 iterations, the same
optimal solution for the algorithm was maintained and thus the loss
remained unchanged. After 2,000 iterations, the loss remains orders
of magnitude higher than the previous algorithms suggesting either
slow convergence of the algorithm or that GA is converging on an
inferior local minimum.

 Figure 34

The NN optimized with GA, was tested out-of-sample to evaluate
its ability to generalize. Figure 35 shows the train and test accuracies
produced by the NN on different iterations. The test accuracy of the
algorithm dominates the train accuracy at any given iteration, which
indicates underfitting. However, even with underfitting, the NN as
able to generalize with accuracy comparable to RHC. This suggests
there’s likely a lot of noise in the dataset; thus, overfitting to the
training set will result in overfitting to the noise and a model with
poor generalization ability.

 Figure 35

Figure 36 shows the confusion matrix of the predictions made by
the classifier. The final model achieved an overall accuracy of
50.8%. Additionally, the algorithm produced many false positives
and when predicating a team will cover a spread, it was wrong with
these predictions more than half the time. When predicting a team
will fail to cover however, the model does much better, producing an
accuracy of 52.8%.

 Figure 36

D. Gradient Descent
We finally analyze the performance of a NN with weights trained

using gradient decent. Using random search, the learning rate that
optimizes in-sample training accuracy was found to be 0.0047. The
loss curve for training of our NN using this learning rate is shown in
Figure 37. As can be seen, the loss curve converges smoothly in
around 1,100 iterations, much quicker than all of the previous
algorithms. Additionally, the loss curve contains fewer kinks and is
able to efficiently identify a local minimum.

 Figure 37

The NN was next tested out-of-sample. Figure 38 shows the
training and testing accuracies at each iteration. Both training and
testing accuracy appear to increase up until 200 iterations. At this
point, the algorithm begins to overfit as seen by the increasing
training accuracy and decreasing testing accuracy. This overfitting

may be curtailed by early stopping. Another important note in Figure
38 is that both training and testing curves plateau after 1,100
iterations; this indication that the algorithm converged to a local
minimum and thus, the weights of the NN don’t change as iterations
are increased beyond 1,100.

 Figure 38

The confusion matrix for gradient descent is shown in Figure 39.
The model performs reasonably and achieves an accuracy over 51%.
In addition, the model appears to produce more accurate results when
predicting a team won’t cover; it is correct 54.1% of the time when
making these predictions. Since only 52.4% accuracy is necessary to
break even, one potential strategy may be to only bet when the model
predicts a team won’t cover. More data, however, would still be
useful to confirm the relative efficiency the algorithm has in
predicting true negatives.

 Figure 39

E. Algorithm Comparison
Figure 40 shows a comparison of the loss curves produced from

RHC, SA and gradient descent. The loss curve for GA wasn’t
included in this plot as it was orders of magnitude higher than the
other algorithms. From the loss curves we note that after 2,000
iterations, all algorithms had a similar loss value of around 0.70.
RHC and SA, however, never completely converge and have larger
loss values in early iterations.

Gradient descent produces the smoothest most consistent loss
curve. This makes sense since gradient descent is always adjusting
the weights in the direction of steepest descent; that is, the algorithm
simultaneously adjusts all weights such that the reduction in the cost
function is maximized. In contrast, RHC and SA rely on randomness
to adjust the weights. RHC randomly makes adjustments and greedily
accepts them if they reduce loss and SA similarly makes random
adjustments but accepts candidate solutions less greedily. Further,
while gradient descent uses backpropagation to simultaneously tune
all weights, RHC and SA consider modifying only one weight with
each iteration. Moreover, by calculating gradients and simultaneously
modifying all weights, gradient descent achieves a quicker and more
reliable convergence path to a local minimum.

 Figure 40

The training time for each iteration is shown in Figure 41; GA
again was excluded from the comparison as the algorithm produced
train times significantly larger than the other algorithms. While RHC
appears to be much slower than SA and gradient descent, this is
because 10 restarts with 2,000 iterations per restart were used.
Moreover, the algorithm completed 20,000 iterations in total, while
SA and gradient descent only finished 2,000 iterations; this explains
why RHC takes roughly 10 times longer than SA. After adjusting for
the number of iterations, RHC, SA and gradient descent all complete
in a similar amount of time. Gradient descent takes a bit longer than
the other two algorithms due to the calculation of the gradient at each
iteration. While this speedup is marginal, our NN only contains a
single hidden layer of size 3. Increasing the size of the network
would likely increase gradient descent’s train time as more weights
would need to be tuned in each iteration and thus partial derivative
calculations.

 Figure 41

While gradient descent is efficient in finding a local minimum
and does so in a reasonable amount of time, test accuracy also needs
to be considered. Figure 42 shows a comparison of test accuracy for
each algorithm. As can be seen, SA performs the best achieving an
accuracy score of 54%. This likely occurs due to the fact that the
other algorithms are overfitting. Gradient descent and RHC in
particular both aggressively search for the global minimum. Gradient
descent always takes greedy steps in the direction of steepest descent
while RHC will only accept a candidate solution that is an
improvement over the current solution. The greediness of each of
these algorithms results in overfitting to the training set and a model
that doesn’t generalize well out-of-sample. While SA has a choppy
loss function, it also exhibits less overfitting. Moreover, when using
gradient descent or RHC to train NN weights on a noisy dataset, early
stopping should be considered to prevent overfitting as such may
impair the generalization ability of the network.

 Figure 42

VI. CONCLUSION
Based on the performance of each randomized optimization

algorithm, it’s clear that different algorithms may perform better on
different problems. For simple optimization problems with little
structural dependencies, SA is fast and efficient. SA’s performance,
however, appears inversely related to the complexity of the problem;
as problems become more complex with more interdependencies and
local minimum, the algorithm’s performance deteriorates. Moreover,
with more complex problems, either MIMC or GA should be
considered. MIMC specifically attempts to model structure using
dependency trees and thus is most appropriate when variables exhibit
conditional independence given another variable. This was present in
the Flip Flop problem where the best value for 𝑥$%& is conditionally
independent of all values except 𝑥$. GA may also be used to model
complex relationships and is most useful when a problem can be
broken down into several smaller and independent optimization
problems.

While RHC, SA and GA are discrete optimization techniques,
they can be applied to continuous domains by considering discrete
step sizes when modifying continuous variables. When applied to the
continuous domain of adjusting NN weights, gradient descent was
most efficient identifying a local minimum. By adjusting all weights
simultaneously in the direction that most reduces the loss function,
gradient descent was able to converge on a local minimum loss
comparable to that found by RHC and SA in around half as many
iterations. While gradient descent is efficient and guaranteed to find a
local minimum, it is also susceptible to overfitting, which is a
particularly important concern when working with noisy datasets. By
greedily tuning weights to minimize in-sample loss, the NN as a
whole may lose its ability to generalize out-of-sample. While the
addition of more data may reduce this overfitting, collecting more
data often is not feasible. Moreover, with limited data, early stopping
or training network weights with less greedy optimization algorithms
such as SA or GA may reduce overfitting and improve generalization
ability.

REFERENCES
[1] Crabtree, T. (2020). NFL Scores and Betting Data. Retrieved from

https://www.kaggle.com/tobycrabtree/nfl-scores-and-betting-data
[2] Hayes, G. (2019). mlrose: Machine Learning, Randomized Optimization and

Search package for Python. https://github.com/gkhayes/mlrose. Accessed: 09
October 2020.

