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Abstract

Conlflicts of interest are ubiquitous in populations. When individuals interact, there are of-
ten discrepancies between what is best for the individual and what is best for the larger group.
Social dilemmas capture the differing incentives between individuals and groups, and specific
models like the prisoner’s dilemma have been studied extensively in both evolutionary game
theory and multi-agent reinforcement learning. However, at the intersection of these fields lies
the understudied question of how population-level stochasticity affects collective learning dy-
namics and emergent behaviors. In this work, we study the impact of random interactions in
populations of greedy (purely self-interested) agents by examining simple, mixed-motivation
stochastic games. Despite the fact that naive self-play leads to inefficient outcomes in coop-
erative social dilemmas, we find that stochasticity in interaction partners within a population
can reverse these outcomes, leading to much larger rewards, on average. This behavior is con-
sistent across a variety of social dilemmas, and it suggests that transient (rather than stable)
encounters can serve as a mechanism for eliciting prosocial behaviors in a population, even
when all agents are self-interested.

1 Introduction

Multi-agent reinforcement learning (MARL) involves modeling and training autonomous agents
that interact within a shared environment. In many real-world systems, agents operate inde-
pendently, without access to centralized control, global reward signals, or direct communication
(apart from reward signals obtained from interaction). Such decentralized settings are common
in applications including autonomous vehicles navigating shared roadways [1, 2], algorithmic
traders in financial markets [3, 4], distributed energy management systems [5, 6], and commu-
nication networks managed by self-interested service providers [7]. In these environments, each
agent typically maximizes its own individual reward, without regard for the goals, strategies, or
learning processes of others. This form of selfish optimization, where agents update their poli-
cies to improve only their personal return, presents significant challenges for achieving globally
efficient outcomes.
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These challenges are especially pronounced in social dilemmas, a class of multi-agent prob-
lems characterized by a conflict between individual incentives and collective welfare. In a social
dilemma, agents face a choice between defection (a strategy that yields higher personal reward at
the expense of others) and cooperation (a strategy that may incur short-term individual costs but
produces greater overall benefit when adopted widely). Classic examples include the prisoner’s
dilemma, the public goods game, and the tragedy of the commons. When all agents pursue
their narrow self-interest, the population often converges to Pareto-suboptimal equilibria, where
mutual defection dominates despite the availability of mutually beneficial cooperative strategies.

Social dilemmas are important to study both theoretically and practically. They model a wide
array of real-world challenges, such as traffic congestion, resource depletion, climate action, and
public health compliance, where the lack of coordination among autonomous agents leads to in-
efficient or even catastrophic outcomes. Addressing these coordination failures is a fundamental
problem in multi-agent systems.

To date, the predominant approaches for fostering cooperation in MARL rely on centralized
mechanisms, including shared objectives, joint training procedures, engineered reward shaping,
or communication protocols. While effective in controlled settings, these methods often assume
access to centralized observability, joint optimization, or structured communication which are
rarely available in practice. In contrast, decentralized MARL considers the more realistic setting
in which agents learn independently, act without coordination, and optimize selfishly. This
formulation better captures real-world conditions, yet cooperation remains difficult to achieve
under such constraints.

One proposed solution is to leverage random encounters, where agents interact randomly
with others drawn from the population and update their strategies based on the outcomes of
those interactions. This setup introduces strategic diversity by exposing agents to a wide range of
behaviors over time, without requiring persistent partners or structured coordination. However,
prior work has largely concluded that random encounters alone are insufficient for sustaining co-
operation. In response, studies have proposed additional mechanisms, such as partner selection,
interaction opt-out, or reputation systems, to stabilize cooperative behavior. These mechanisms
often rely on assumptions such as agent memory, observability of others” behavior, or control
over the interaction structure, conditions that may not hold in fully decentralized systems.

This study revisits the role of random encounters in decentralized MARL and presents evi-
dence that randomized partner interactions can, in fact, promote cooperation, even among selfish
agents. Using Markov games that retain the core structure of social dilemmas it is shown that
random encounters introduce population-level stochasticity that can help escape defective equi-
libria and discover globally optimal strategies. This finding runs counter to the prevailing view
that randomness in interactions inherently drives populations toward mutual defection.

A central insight is the role of forgiving strategies in enabling cooperative dynamics. Forgiv-
ing agents respond to defection not with retaliation, but with continued cooperation, tolerating
short-term exploitation in exchange for long-term benefits. While seemingly vulnerable, these
strategies can act as stabilizers in population dynamics, guiding selfish agents toward coopera-
tive equilibria by creating a path back to mutual benefit. Their spontaneous emergence highlights
the importance of population diversity and raises the question of whether such strategies can be
deliberately introduced into learning populations to improve outcomes.

To better understand and track these dynamics, a novel representation learning framework is
introduced: the behavior space autoencoder (BSAE). This method constructs a low-dimensional



73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

105

107

108

109

110

111

latent space that captures agent behaviors, enabling visualization, measurement, and analysis
of population trajectories over the course of learning. Beyond diagnostics, this behavior space
supports latent reinforcement learning, allowing policies to be directly optimized in the behav-
ior space. This approach yields substantial improvements in sample efficiency and provides a
powerful tool for steering population-level learning dynamics.

Together, these results demonstrate that cooperation can emerge in decentralized systems
composed of selfish learners, even in the absence of communication, memory, or central con-
trol. Through random interactions and diverse policy landscapes, agents can self-organize into
globally cooperative outcomes. This challenges long-standing assumptions in the MARL liter-
ature and opens new avenues for designing decentralized systems capable of resolving social
dilemmas.

2 Related Work

Game theory and multi-agent reinforcement learning. Game theory provides mathematical
tools to analyze multi-agent interactions and has been used extensively in MARL research to
study equilibrium concepts like Nash Equilibria and correlated equilibria [§]. While MARL re-
search often centers on temporally and spatially extended environments and specialized bench-
marks [9] (e.g., StarCraft II, Quake III), other efforts seek more general insights into multi-agent
learning in smaller-scale social dilemmas [10-12]. These connections have been further explored
in works [13]] establishing formal frameworks for agent interactions.

Social dilemmas. In social dilemmas [14], including the prisoner’s dilemma and public goods
games, individual incentives are at odds with collective welfare, leading to conflicts of interest.
In repeated or Markov-game formulations, agents can learn strategies conditioned on past states
and actions, leading to a wealth of possible equilibria. Classic findings show that naive self-
play often leads to defection, though specialized reward shaping [15| 16], partner choices [17,
18] communication [19], or carefully tuned learning rates [learningRateVsreward, 20, 21] can
sometimes restore cooperation [22-25].

Population-based learning. Population-based methods typically train multiple agents in par-
allel, often saving strategies along a training trajectory [26]. Our work is closely related but
emphasizes random interaction partners each round and focuses on social dilemmas. Crucially,
the goal is to lift the entire population to cooperative rewards, not just a single agent, without
the use of institutions or other centralized control. The closest work to this study uses exact
calculations in matrix games in conjunction with a partial differential equation to study collec-
tive learning in effectively infinite populations [27]. There, it is noted that random interactions
can change outcomes relative to learning in pairs, but the primary strategy space is the two-
dimensional space of reactive strategies, which cannot accommodate multi-state games and even
yields a limited behavioral space within matrix games.

Population-based learning in social dilemmas. The prevailing view in the literature holds that
population-based learning and random encounters are insufficient to overcome selfish behavior
in social dilemmas. Previous studies have introduced additional mechanisms, such as partner



12 selection and the ability to opt out of interactions, as critical for enabling cooperation. For exam-
us  ple, [28] propose a reactive partner selection mechanism. In each round, agents select a partner
14 for a one-shot prisoner’s dilemma game and update their strategies using Q-learning. The study
us finds that cooperation can emerge when agents learn policies for partner selection; however, they
us find random partner selection strategies lead to widespread defection.

117 A similar investigation by [29] explores a setting in which agents may opt out of interactions.
us Again employing Q-learning, the study shows that allowing agents to learn opt-out strategies
uo fosters cooperation. Consistent with the findings of [28]], this study also concludes that random
120 interactions result in defective outcomes.

121 Collectively, prior studies suggest that random encounters tend to produce inefficient out-
12 comes in social dilemmas. However, the findings presented in this work challenge this narrative.
123 Evidence is provided that a more general form of population-based learning, absent mechanisms
124 such as engineered partner selection or opt-out options, can lead to the reversal of defection and
125 the emergence of cooperation across a wide spectrum of social dilemmas. This suggests that the
126 lack of cooperative outcomes reported in earlier work may not be an inherent limitation of popu-
127 lation dynamics, but rather a consequence of specific experimental design choices. These include
128 the reliance on Q-learning, the restriction to single-shot interactions, or an insufficient number of
120 training episodes. These results hold important implications for the design and interpretation of
130 multi-agent learning systems.

m 3 Model

12 3.1 Markov decision processes

133 A Markov decision processes (MDP) is a mathematical framework for modeling sequential decision-
134 making tasks involving a single agent operating within a probabilistic environment. Formally,
135 an MDP can be defined as a tuple (S, A,r, P, y), where:

136 * S is the state space, representing all possible configurations or situations of the environment.
137 Each s € S corresponds to a specific, fully observable condition of the environment.

138 * A is the action space, which consists of all possible actions the agent can take. The available
139 actions may depend on the current state.

140 * r:S5x A — Ris the reward function, which maps a state-action pair to a scalar reward value.
141 This function quantifies the immediate benefit or cost to the agent of taking a specific action
142 in a given state.

143 e P:Sx A — A(S) is the transition probability function, where A (S) denotes the set of proba-

144 bility distributions over S. Specifically, P (s | s, a) represents the probability of transitioning
145 to state s’ when the agent takes action 7 in state s.

146 e v € [0,1] is the discount factor, which determines the present value of future rewards. A
147 lower < indicates a preference for short-term rewards, while a higher 7y values long-term
148 rewards more heavily.

149 An agent interacting with an MDP selects actions according to a strategy 77 : S — A(A),

150 which maps states to a distribution over actions. The agent’s objective is to identify a strategy

4
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that maximizes the expected cumulative discounted reward, which can be formally expressed as:

Er

Y ' (sear)|, (1)
=0
where s € S is the initial state, a; ~ 77 (- | s¢), and sp41 ~ P (- | s, a¢) for t > 0.

3.2 Markov games

Markov games, also known as stochastic games, extend Markov Decision Processes (MDPs) to
settings involving multiple agents, enabling the study of strategic interaction in shared, stochastic
environments [30]. A Markov game with n agents can be described by the tuple:

(Sz{Ai}?:lr{”i}?:lfpr'Y)' (2)

where the state space S and the discount factor -y retain the same meaning as in the MDP frame-
work. The multi-agent extension introduces agent-specific action sets, individualized reward
functions, and a joint influence on the environment dynamics:

e Each agent i € {1,...,n} has its own action space A;, from which it selects actions inde-
pendently at each time step.

® The reward function r; : S X A; X --- X A, — R defines agent-specific rewards based on
the current state and the joint actions of all agents.

e The transition function P (s’ | s, a1, ...,a,) describes how the environment evolves given the
joint actions of all agents.

At each time step, agents choose their actions simultaneously, resulting in a joint action profile
(a1,...,a,). The system then transitions to a new state based on P, and each agent i receives a
reward ;. Each agent aims to maximize its expected cumulative discounted reward:

[ee]

IE?T Z ’)/tri (St, ul,tl ey un,t) ’ (3)
t=0

where 7 = (71y,...,7,) is the joint strategy profile.

In contrast to single-agent MDPs, Markov games introduce multiple agents whose simultane-
ous and potentially conflicting objectives transform the environment into a dynamic and strategic
setting. Each agent must account not only for environmental dynamics but also for the evolving
behavior of others. This multi-agent formulation enables the modeling of complex strategic in-
teractions, such as competition, cooperation, and coordination, making it a powerful framework
for analyzing decision-making in shared environments.

3.3 Social dilemmas

A social dilemma describes a scenario where individually rational decisions produce outcomes
that are collectively inefficient or even harmful. More formally, it arises when the incentives of
each agent align with actions that maximize personal benefit, yet when all agents act on these

5
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incentives, the resulting joint outcome is worse for everyone than if they had coordinated differ-
ently. This creates a core tension between optimizing for self-interest and achieving outcomes
that are beneficial for the group as a whole.

Social dilemmas are central to understanding cooperation and coordination challenges in
multi-agent systems. They appear across a wide range of real-world domains. In environmental
economics, for example, climate change mitigation presents a classic dilemma: individual ac-
tors, such as countries or corporations, may benefit from continuing to emit greenhouse gases,
avoiding the short-term costs of abatement. Yet, when all actors behave this way, the long-term
global consequences are catastrophic. Similarly, in public goods provision, individuals may be
tempted to withhold contributions while benefiting from others’ efforts, ultimately leading to
underfunding or collapse of the shared resource.

In the context of autonomous systems, social dilemmas present a growing challenge. Con-
sider self-driving vehicles navigating a four-way stop. Each car has an incentive to proceed
quickly to minimize delay. If one vehicle yields while others proceed, the system functions
smoothly. But if all vehicles attempt to go first, collisions or deadlock can occur, degrading traffic
flow and safety for everyone. Similarly, during lane merging or highway ramp access, vehicles
that aggressively merge to minimize travel time may cause stop-and-go traffic or increase the risk
of accidents. In contrast, systems that incorporate occasional yielding or cooperative timing can
improve overall efficiency, though these behaviors are not individually optimal in the short term.

These examples illustrate why social dilemmas are critical to study: they capture the essential
tension between local decision-making and global outcomes. Designing agents that can recognize
and navigate such tradeoffs is a key challenge in multi-agent learning, especially in domains
where safety, fairness, and efficiency depend on sustained coordination. Understanding the
mechanisms that enable cooperation to emerge and persist, such as reciprocity, reputation, or
shared norms, is essential for building robust and socially aligned autonomous systems.

3.4 Simple Markov games as social dilemmas

This work focuses on a class of simple Markov games involving social dilemmas. These games are
simple in the sense that they contain a small number of states, typically one or two, and a limited
action set per agent, often consisting of two or three possible actions. Crucially, these games
involve repeated interactions rather than single-shot encounters: agents interact over multiple
time steps, which allows for the emergence of complex, adaptive strategies. Moreover, while we
call these games simple the space of behaviors which they can model is far from simple. The
dynamics of which are still not well understood in the literature.

Compared to the complex Markov games typically studied in MARL, simple games offer a
distilled view of the core strategic tensions that define real-world social dilemmas. By abstract-
ing away domain-specific mechanics and environmental intricacies, these minimal environments
help avoid conclusions that are overly dependent on the quirks of particular settings. This mir-
rors the problem of overfitting in machine learning, where models may learn shortcuts and exploit
spurious correlations, such as associating grass with the label “dog,” instead of learning robust,
generalizable patterns. Similarly, agents trained in complex environments can develop brittle
strategies that exploit incidental features of the environment rather than learning the underlying
strategic structure.

Simple Markov games mitigate the risk of overfitting to environmental intricacies by isolat-
ing the core social dilemma itself. This isolation allows for theoretical insights that generalize
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more reliably across different domains. Additionally, the simplicity of these games enables exact
computation of rewards and learning gradients, enhancing interpretability and providing a high
degree of analytical tractability. Consequently, these environments serve as powerful tools for
studying the dynamics of learning, adaptation, and strategic behavior in multi-agent systems.
The following sections describe specific social dilemmas studied, demonstrating the rich
range of cooperative and competitive dynamics possible in repeated simple Markov games.

Prisoner’s dilemma (PD): The prisoner’s dilemma is a canonical social dilemma, modeled here as
a repeated game with a single state and two possible actions: cooperate (C) or defect (D). In each
round, both agents simultaneously select their actions without knowledge of the other’s current
choice. The resulting pair of actions determines their individual rewards, which are defined by
a payoff matrix characterized by four key parameters: the reward for mutual cooperation (R),
the punishment for mutual defection (P), the temptation payoff for unilateral defection (T), and
the sucker’s payoff for unilateral cooperation (S). A commonly employed parameterization is
(R,S,T,P) = (3,0,5,1), which encapsulates the strategic tension central to the dilemma.

Defection strictly dominates cooperation for the individual, meaning that regardless of the
other agent’s action, choosing to defect yields a higher immediate reward. For example, if the
other agent cooperates, defecting yields the temptation reward T = 5 rather than the mutual
cooperation reward R = 3. If the other defects, defecting yields P = 1 instead of the sucker’s
reward S = 0. Despite this incentive to defect, mutual cooperation results in a collectively better
outcome, with each agent receiving R = 3 compared to P = 1 in mutual defection. This creates
a tension between self-interest and the common good: while defection is individually rational, it
leads to worse outcomes for both agents when both defect.

In the repeated prisoner’s dilemma, also known as the iterated prisoner’s dilemma (IPD),
these interactions occur over multiple time steps, allowing agents to adapt their behavior based
on previous rounds. This repeated structure enables the development of complex strategies
such as reciprocity, punishment, and forgiveness, which can sustain cooperation despite the
temptation to defect in any single round. By conditioning actions on past behavior, agents can
build trust and enforce social norms, making the repeated prisoner’s dilemma a fundamental
framework for studying how cooperation can emerge and be maintained in multi-agent systems
facing conflicting incentives.

Two-state coin game: The original coin game, introduced by Lerer and Peysakhovich [31], is a
spatially structured multi-agent Markov game designed to capture the complexities of cooper-
ation and competition in dynamic, spatially extended environments. In this setup, two agents
occupy a grid world where red and blue coins appear randomly at different locations. Each
agent is assigned a color, red or blue, and receives positive rewards for collecting coins of any
color. Critically, when an agent collects a coin of the opponent’s color, it also imposes a penalty
on the other player. This setup captures a social dilemma with a spatial component: agents must
balance immediate self-interest against the longer-term consequences of their actions in a shared
space.

The two-state coin game removes all the “non-rewarding” states from the original environ-
ment. In this simplified version, each state corresponds solely to whether the coin present is
red or blue, and the rewards match those of the original game when each agent is positioned
immediately adjacent to the coin. By eliminating sparse, non-informative states, the two-state
coin game offers improved learning efficiency and yields results that are easier to interpret.
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Studying this two-state coin game is vital for understanding learning dynamics in spatially
extended social dilemmas, as many real-world social interactions unfold in spatially structured
settings, ranging from competition over natural resources in ecological systems to coordination
among autonomous vehicles in traffic networks. Examining algorithms within this streamlined
yet spatially meaningful framework provides valuable insights into how spatial factors influence
learning, strategy development, and the delicate balance between cooperative and competitive
behaviors. Such insights are critical for designing resilient multi-agent systems capable of navi-
gating and resolving complex spatial social dilemmas.

Nonlinear donation game: The donation game is a classical model for studying altruism and
cooperation. In its original form, each agent may choose to incur a cost c to provide a benefit
b to another agent. traditionally, the donation game assumes a linear relationship between the
cost incurred and the benefit conferred. That is, cooperation always improves group welfare,
and more cooperation is always better. However, this assumption fails to capture a range of real-
world situations in which increasing levels of cooperation may produce diminishing rewards,
or even net harm. For example, in public health, a moderate level of social distancing might
effectively reduce disease spread with tolerable inconvenience, whereas extreme isolation may
impose excessive social and economic costs that outweigh the additional benefits.

To model this non-linearity, the nonlinear donation game introduces a richer action space and
a more nuanced reward structure. Instead of two actions (cooperate or defect), each agent now
has three: one defection action (D) and two levels of cooperation (c; and c;). These represent
increasing degrees of altruistic behavior. Specifically, ¢; incurs a smaller cost and delivers a
smaller benefit by, while ¢, incurs a larger cost and delivers a larger benefit b, with c; > ¢; > 0
and b, > by > 0. Importantly, the game is constructed so that the net social value (i.e., total
benefit minus total cost) is maximized not at the highest cooperation level, but at the moderate
one: by —cy > by —cp > 0.

This non-linearity introduces a fundamentally different strategic challenge. Unlike in the
prisoner’s dilemma, where increasing cooperation is unambiguously better for the group, here
the socially optimal outcome occurs at an intermediate level of cooperation. Full cooperation may
be too costly to justify the additional benefits, while no cooperation leaves significant potential
gains unrealized. As a result, the game poses a subtler learning problem: agents must not only
learn to cooperate but also learn how much to cooperate. As such, the nonlinear donation game
provides a compelling testbed for understanding whether learning algorithms merely default to
maximal cooperation or are capable of discovering socially optimal behaviors.

Ecological prisoner’s dilemma: This game extends the classic prisoner’s dilemma by adding
an additional state to introduce ecological feedback. The first state mirrors the standard setup,
in which agents face the familiar tension between short-term self-interest and long-term group
benefit. However, repeated mutual defection in this state leads to a transition into a second state
that represents environmental degradation, characterized by uniformly negative rewards for all
joint actions. This models the long-term consequences of over-exploitation, such as resource
depletion, pollution, or ecological collapse.

The key innovation in this variant is the coupling of agent behavior with environmental dy-
namics: the agents’ collective actions directly influence the transition between states, embedding
the strategic dilemma within a broader ecological context. Unlike in the standard prisoner’s
dilemma, where the incentive to defect dominates, the looming threat of environmental collapse
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introduces a natural incentive to maintain cooperation as a preventive measure. This shift re-
frames the problem as not just a question of whether agents will cooperate, but whether they can
internalize the long-term consequences of their actions through learning.

Studying this ecological variant is important for several reasons. First, it provides a principled
way to investigate how learning agents respond when the rewards are endogenous and evolve
as a function of behavior, rather than being fixed. Second, it sheds light on whether cooperation
can be sustained in the face of long-term collective risk. By comparing agent behavior in this
setting to that observed in the classic prisoner’s dilemma, we can examine whether the presence
of a natural incentive to cooperate leads to qualitatively different learning dynamics or long-term
equilibria. This has direct relevance to real-world challenges in climate strategy, sustainability,
and commons governance, where ecological feedback loops are both powerful and pervasive.

3.5 Adaptation and learning

To analyze the emergence of cooperation in social dilemmas, a population of N agents is con-
sidered, engaging in repeated pairwise interactions. Agents adopt stochastic strategies that are
selfishly updated via gradient ascent, facilitating the study of strategy dynamics under decen-
tralized learning in a range of environments.

Strategy representations. Strategies are represented as memory-one strategies which condition
behavior solely on the outcome of the previous round of interaction. Formally, let A denote the
set of possible actions. Since each agent observes both their own and their opponent’s action
from the previous round, there are |A|2 possible joint actions to condition on. A memory-one

strategy defines, for each such joint action pair (af_l, a;_l) € A x A, a probability distribution

over next actions:

s <af- | alt.’l,uTl) eA(A), (4)

where A (\A) is the probability simplex over actions and ¢ is the round of play. While memory-one
strategies abstract away the full history of play, they do not limit the expressiveness of the strategy
space: any strategy that can be represented as a full memory can also be represented using
a memory-one strategy. Moreover, restricting attention to memory-one strategies significantly
reduces the size of the state space, thereby enhancing both learning efficiency and interpretability.

We consider two types of strategy parameterizations for implementing memory-one strate-
gies: tabular strategies and neural network strategies.

Tabular strategies represent the strategy explicitly as a lookup table over the |AJ? previous
joint action pairs. Each entry in the table specifies a distribution over the agent’s next action.
This discrete and fully specified structure makes tabular strategies highly interpretable. Their
interpretability makes them ideally suited for analyzing behavioral dynamics in simple, well-
controlled environments. However, tabular strategies scale poorly as the action space grows or
when the environment includes richer state information. Their use is thus limited to environ-
ments with small, discrete input spaces.

Neural network strategies offer a more scalable alternative. In our framework, they are still
memory-one in structure: the network takes as input a representation of the previous joint action
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(af_l, a?‘l) , encoded for instance as a one-hot vector, and outputs a distribution over actions:

TTp <af- | alt.’l,u§’1> = softmax (fg <a§’1,a;’l>> , (5)

where fy is a neural network with parameters 6. Neural strategies are capable of generalizing
across input patterns and can scale to environments with large or continuous observation spaces.
However, this expressiveness comes at a cost: the function learned by the network is not easily
interpretable, and small changes in parameters can induce correlated, global changes in behavior.
This makes it difficult to attribute specific actions or outcomes to identifiable behavioral rules.

Gradient-based strategy updates. Agents use gradient based learning rules to update their
strategies selfishly. That is, they ignore the reward of their opponent and seek only to maximize
their own long-term expected reward. Let 71; and 7; denote the strategies used by agents i and j,
respectively. The quality of strategy 71; when facing 7; is quantified by the expected discounted
reward:

u (71'1', 7T]‘) = Erw(ni,nj) [;} ’YtTf] , (6)

where 7 is a trajectory induced by the joint strategies, r! is the reward received by agent i at time
t,and v € (0,1) is the discount factor. The gradient ascent update rule modifies strategies in the
direction of the maximal gradient:

it = a4 VU (7)), (1)

where 7 is the learning rate. These updates are local and selfish: each agent optimizes its own
reward without considering the broader population dynamics.

In simple Markov games V.U (71, 77j) can be computed explicitly. In complex environments
where exact gradients are intractable, agents estimate V.U (71;, 71;) using policy gradient methods.
These approaches optimize a parameterized policy, 77 : S — A (A;) by maximizing the expected
return,

U () = Eror, [Z ’ytrt] . (7)
t=0
Using the log-derivative trick, the gradient can be expressed as:

Vol (6) = E,
t=0

i Vg log 7Tp (I/'It | St) . Rt] , (8)

where R; = Y5>, v¥7!rk is the return from time t. This formulation allows the use of sampled
episodes to estimate gradients, enabling learning in environments where explicit models are
unavailable. The behavior of selfish agents in social dilemmas is studied using both exact and

policy gradients.
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Population-level learning dynamics. This study investigates the impact of population stochas-
ticity in social dilemmas through a framework where a population of N agents repeatedly partici-
pates in decentralized, pairwise interactions governed by the learning rules described above. The
learning process unfolds over many rounds of interaction. In each round, the population is par-
titioned into N /2 pairs. Each pair plays a repeated Markov game using their current strategies
at time f. For a given interaction between agent i and agent j, the outcome is evaluated using the
expected discounted reward U (77;, 77j). Agent j receives a reward U (7tj, 77;). These rewards are
used to update each agent’s policy using the gradient-based learning rules described in previous
sections.

After the policies are updated, the population is re-paired for the next round of interaction.
We consider two distinct pairing mechanisms, which represent qualitatively different interaction
structures:

¢ Fixed Pairings: Each agent is paired with the same partner across all rounds. This regime
corresponds to standard “naive self-play,” where agents co-adapt in isolation.

* Random Pairings: Agent pairings are assigned randomly after each round. This simulates
a well-mixed population in which agents interact with a broad and changing set of partners
over time. Random pairing introduces population-level stochasticity and exposes agents to
a greater variety of strategies, potentially enabling more robust and generalizable forms of
cooperation.

A visual summary of this learning and adaptation process is provided in ??. This population-
based learning framework enables a systematic exploration of how the structure of social inter-
action influences the trajectory of behavioral evolution. In particular, it offers insight into how
diverse encounters and patterns of social exposure affect the resolution of social dilemmas, in-
cluding the emergence and stability of cooperation in the absence of coordination or centralized
control.

4 Strategy Initialization

The way strategies are initialized in population-based learning sets the stage for how agents
explore and grow through interaction. When agents begin with a broad range of strategies,
they experience a richer variety of behaviors, leading to more effective learning. However, if the
initialization is too narrow, agents become confined to a small set of behaviors, which limits the
benefits of population-based learning and can make it no better than naive self-play.

It is important to understand that diversity in the parameter space alone does not guarantee
meaningful diversity in behavior. Parameter space diversity refers to variation in the underlying
numerical parameters that specify a strategy. For example, in neural network strategies, this cor-
responds to differences in the network weights; in tabular strategies, this means different proba-
bility values assigned to actions. While parameter diversity measures how “far apart” strategies
are in terms of their internal representation, it does not necessarily reflect how differently those
strategies behave in practice.

In contrast, behavior space diversity is concerned with the variation in the observable con-
sequences of deploying a strategy. In multi-agent settings, this means how a strategy’s actions
influence the rewards it obtains when interacting with other agents. Formally, we define the
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behavior of a strategy 71; with respect to a population P as the expected reward achieved when
interacting with strategies sampled from P:

Vavg (7‘[1',7)) = IET[]'NP [ll (7'[1', 7'[])] . (9)

This definition grounds behavior in the functional impact of a strategy within its interaction
context, rather than its internal parameterization.

This distinction is crucial because many environments exhibit nonlinear reward dynamics,
where uniform sampling of the parameter space often does not produce a uniform or meaningful
coverage of behavioral space. Small parameter changes may correspond to large behavioral
differences or none at all. Conversely, in linear reward environments, parameter variation more
directly translates to variation in behavior and payoffs.

To demonstrate the influence of strategy initialization on parameter diversity and behavior,
two complementary approaches based on autoencoders are developed: one that captures vari-
ation in strategy parameters, and another specifically designed to capture behavioral variation
through reward outcomes.

4.1 Parameter space autoencoder

The parameter space autoencoder, shown in is trained to compress and reconstruct
high-dimensional strategy representations, optimizing for minimal reconstruction loss. Given a
strategy 71, the encoder E maps it to a low-dimensional latent vector z = E (71), and the decoder
D attempts to reconstruct 7t from z, such that the reconstruction loss

2
Lrec = ||t =D (E(m))|| (10)
is minimized.
This setup ensures that the latent space captures the structure of the parameter space and
clusters similar parameters together. Note, however, that it is agnostic to the actual behavior
of strategies. Two strategies that differ significantly in parameter space may lead to indistin-

guishable in-game behavior. Moreover, the parameter space autoencoder only helps visualize
parameter space diversity of strategies and does not capture meaningful behavioral distinctions.

4.2 Behavior space autoencoder

To specifically capture agent behavioral, a behavior space autoencoder is introduced. This model
takes pairs of strategies (77;, 77;) as input and learns to predict their long-term expected rewards,
denoted U (7, 77j).

The behavior space autoencoder consists of an encoder E that maps each strategy to a latent
representation z; = E (71;) and z; = E (7). The decoder then takes (z;,z;) as input and outputs
the predicted rewards to each player when these strategies interact. The loss function Lpayoff is

defined as:
Lrewara = |U (73, 7;) = U (E (), E ()| (11)
This architecture enforces a crucial inductive bias: strategies that produce similar outcomes
in terms of interaction rewards are embedded nearby in the latent space, even if their param-
eterizations differ drastically. In this way, the behavior space autoencoder captures behavioral
equivalence or similarity and emphasizes diversity in terms of strategic effect rather than raw

structure, as shown in [Figure 1b

12
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(a) Parameter space autoencoder. This autoencoder is trained to minimize reconstruction loss between the original and
decoded strategies, compressing strategies purely based on their raw parameter vectors. As a result, the latent space clusters
strategies with similar parameterizations, regardless of how they behave during interactions.

Policy 1
\ Predicted
(L), Payoffs
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(b) Behavior space autoencoder. In contrast to the parameter space autoencoder, this model embeds strategies based on
how they interact in the environment. It takes pairs of strategies and predicts their expected rewards, learning a latent space
where strategies with similar behavior and reward profiles are placed nearby. This behavior-aware representation captures
the strategic equivalence and diversity that arise from actual gameplay outcomes, even if the underlying parameterizations
differ widely.

Figure 1: Autoencoder Architectures for Strategy Embedding. These diagrams illustrate two distinct approaches to
creating strategy embeddings. The parameter space autoencoder (E[) focuses on compressing raw parameter vectors,
while the behavior space autoencoder (b) emphasizes strategic behavior as inferred from expected interaction payoffs.
Together, these models enable both structural and functional interpretations of the strategy landscape.
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4.3 Visualizing parameter and behavioral diversity

To understand the impact of strategy initialization, two initialization schemes are analyzed us-
ing both a pre-trained parameter space autoencoder and a pre-trained behavior space autoencoder,
which embed memory-one strategies for the prisoner’s dilemma into a two-dimensional space.
These embeddings facilitate interpretation of both parameter variation and behavioral diversity
as reflected in the reward structure.

We consider two initialization schemes:

e Dirichlet (1.0): Equivalent to uniform sampling over the simplex.
e Dirichlet (0.1): Favors sparse strategies with probability mass near the corners [0, 1].

A total of 100,000 strategies are sampled from each distribution and processed through the
respective encoders. The resulting embeddings are visualized in

IFigure 2p and [Figure 2c show the embeddings produced by the traditional autoencoder. When
sampling from Dirichlet (1.0), the strategies appear broadly distributed in parameter space, sug-
gesting high surface-level diversity. In contrast, Dirichlet (0.1) generates tighter clusters in pa-
rameter space, implying that the sampled strategies seem more similar in terms of their raw
parameters.

However, a contrasting picture emerges when the embeddings are examined from the per-
spective of actual strategic behavior. [Figure 2b and |[Figure 2d present embeddings derived from
the BSAE, corresponding to strategies sampled from Dirichlet (1.0) and Dirichlet (0.1), respec-
tively. Notably, reveals that strategies sampled from Dirichlet (0.1) span a wide and
comprehensive region of behavior space, including its extreme edges. This is significant, as it
highlights the presence of diverse and extreme strategic profiles within the prisoner’s dilemma
behavior space.

Efficient coverage of this behavior space is critical because incorporating these behavioral
extremes allows agents to learn from the broadest possible range of strategies. When initialized
in this manner, agents can interpolate between a more extensive set of strategies, overcoming the
limitations imposed by their initial parameterization. In contrast, shows that, despite
the apparent parameter-level diversity produced by Dirichlet (1.0), many behavioral extremes
remain unexplored. Even with 100,000 sampled strategies, certain crucial regions of the behavior
space are left uncovered, potentially restricting an agent’s ability to learn from key strategic
profiles during training.

This distinction is crucial: diversity in parameter space does not necessarily equate to di-
versity in behavior space. While Dirichlet (1.0) spreads samples broadly across the parame-
ter simplex, it does not fully cover the behavioral landscape and therefore misses high-impact
strategies located at the edges of the behavior spectrum. Conversely, strategies sampled from
Dirichlet (0.1), despite exhibiting less apparent diversity in parameter space, actually achieve
broad and comprehensive coverage of behavior space. Thus, sampling from a Dirichlet prior with
a low concentration parameter offers a powerful mechanism for initializing strategies that ensure
rich behavioral diversity, enabling more effective exploration and learning within population-
based frameworks.

14



Parameter Space Autoencoder Behavior Space Autoencoder

S S
— —
] Il
B B
- -
9 9
< <
o o
= =
[a)] [a)]

Parameter Space Autoencoder
= =
o o
Il Il
B B
- -
9 9
< <
IS, IS,
a a

Figure 2: Visualization of 100,000 sampled strategies from two Dirichlet distributions, embedded using a traditional
autoencoder (Figures a and b) and a payoff-based autoencoder (Figures ¢ and d). (a) Dirichlet (1.0) with parameter
space autoencoder shows widespread coverage in parameter space. (b) Dirichlet (1.0) with behavior space autoen-
coder fails to capture the extremes (corners) of the behavior distribution. (c) Dirichlet (0.1) with parameter space
autoencoder shows tighter parameter clusters. (d) Dirichlet (0.1) with behavior space autoencoder reveals broad be-
havioral coverage, particularly at the extremes of the strategy space. These results illustrate that parameter diversity
does not necessarily translate to behavioral diversity and motivate the use of sparse Dirichlet priors to ensure expo-
sure to qualitatively distinct strategic behaviors.
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5 Experiments

5.1 Implementation details

The proposed population learning framework was evaluated across the four social dilemmas
defined in Section These games differ in their action spaces and payoff structures, and
involve repeated interactions. After each round, agents updated their strategies using either
exact or approximate policy gradients.

In the exact gradient setting, long-term expected rewards were computed precisely using
full knowledge of the environment dynamics or exact value computation. This allowed for a
higher learning rate of 0.1, as the precise gradient information reduced the risk of destabilizing
updates. In contrast, approximate gradients were computed using vanilla policy gradient with
rollouts of 250 time steps. Due to the increased variance in these estimates, a smaller learning
rate of 0.05 was used to ensure stability. All updates were performed using stochastic gradient
descent (SGD), which is better suited for non-stationary multi-agent environments. SGD provides
more stable dynamics compared to adaptive optimizers like Adam, which may overfit to rapidly
changing local gradients.

Both tabular and neural network (NN) strategies were implemented. In the tabular setting,
strategies were stored as explicit state-action mappings, with each value updated independently.
For neural strategies, each was represented by a feedforward neural network with a single hidden
layer. The hidden layer had a width equal to four times the size of the state-space. Initial
strategies were sampled independently for each agent using a Dirichlet distribution over the
action simplex. This initialization method enabled controlled exploration of initial diversity.

Performance was assessed using the average total population reward. This metric serves as
a meaningful proxy for social efficiency and cooperation: higher average rewards indicate not
only successful individual behavior but also emergent alignment among agents. Importantly, this
metric captures more than just full cooperation, especially in games where blindly maximizing
cooperation can be suboptimal, making it a robust measure of overall population-level effective-
ness. The learning framework was evaluated against a baseline of naive self-play, in which agents
interact with fixed opponents that do not change after each round. All results are reported as
averages over 10 random seeds.

5.2 Exact gradients

summarizes the learning dynamics of populations of size N = 50, trained using exact
gradient updates and tabular strategies, across several distinct Markov games. Each row in the
tigure corresponds to a different social dilemma, while the two columns compare two experi-
mental conditions: (1) fixed pairings, where agents are matched with the same partner across
rounds of the repeated game, and (2) random pairings, where partners are reshuffled after each
round. The y-axis reports the average population reward over time (x-axis), serving as a proxy
for the overall social welfare.

Across all games, a consistent and robust pattern emerges: random pairings systematically
outperform fixed pairings in terms of long-run average population reward. This result is particu-
larly striking because it holds across a diverse set of social dilemmas, each with its own strategic
structure and payoff landscape. The presence of partner randomization significantly improves
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learning outcomes, enabling agents to escape from local equilibria associated with mutual defec-
tion and to discover globally superior strategies.

In the standard repeated prisoner’s dilemma, agents paired with the same partner learn
to defect almost immediately. This behavior leads to low and stagnant population rewards.
In contrast, when partners are randomized after each round, agents initially follow a similar
trajectory toward defection, but then exhibit a strong and sustained reversal. Over time, the
population converges toward strategies that support cooperation, leading to a markedly higher
average reward. This rebound suggests that exposure to a broader variety of partner strategies
encourages the evolution of more generalizable, cooperative strategies.

Similar trends are observed in the coin game and the nonlinear donation game. Under fixed
pairings, agents again fall into early defection traps, never recovering to cooperative norms.
However, random pairings lead to recovery and eventual convergence toward higher-reward
outcomes. The nonlinear donation game is particularly illustrative, as it features a non-monotonic
relationship between cooperation and global welfare. Unlike simpler dilemmas where maximum
cooperation aligns with the global optimum, here it is an intermediate level of cooperation that
yields the highest population reward. Remarkably, the population with randomized partners
does not merely maximize cooperation blindly; rather, it converges to this more nuanced global
optimum. This finding underscores the capacity of diverse interactions to enable agents to learn
not just pro-social behavior, but strategically optimal cooperation.

The ecological variant of the prisoner’s dilemma introduces a modified incentive structure
in which cooperation is more naturally rewarded. In this case, both fixed and random pairings
result in an increase in cooperative behavior. Agents in fixed pairs gradually learn to cooper-
ate roughly two-thirds of the time, resulting in an average population reward just above -1, a
significant improvement over the mutual defection outcome of -5. Nevertheless, even in this
more favorable environment, fixed pairs plateau below the optimal outcome. In contrast, ran-
dom pairings drive the population to full cooperation, achieving the global maximum. This
again highlights the role of interaction diversity in promoting socially efficient outcomes, even in
games where cooperation is already partially incentivized.

Overall, these findings demonstrate that the structure of partner interaction significantly
shapes the emergent strategies in multi-agent learning. Fixed pairings promote myopic, partner-
specific strategies that are prone to early convergence on suboptimal equilibria. In contrast,
randomization introduces variability and strategic uncertainty, which serves as a form of reg-
ularization or exploration, driving the system toward more generalizable and socially optimal
solutions.

These results connect between MARL and foundational insights from evolutionary game
theory, where mechanisms that promote social mixing are known to support the emergence
of cooperation. Our findings provide both algorithmic and empirical reinforcement of these
theoretical principles in the context of modern learning agents. By showing that randomized
partner interactions consistently lead to more favorable collective outcomes, this work bridges
the gap between evolutionary models of cooperation and contemporary MARL frameworks.
From a design standpoint, the results suggest that artificial systems composed of interacting
agents should incorporate dynamic and heterogeneous partner interactions to avoid pathological
convergence to selfish or suboptimal equilibria. Partner randomization and structural diversity
act as an implicit curriculum, encouraging broader exploration and generalization.
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Figure 3: Impact of Interaction Stochasticity with Exact Gradients. A population of 50 agents with tabular, param-
eterized strategies was initialized using a Dirichlet (0.75,0.75) distribution. We compare the performance of stable
pairings, where opponents remain fixed, with random pairings, where opponents are randomized each round. This
figure demonstrates that fixed interactions often lead to a rapid convergence to a suboptimal equilibrium, while
stochastic interactions, characterized by randomly changing opponents, can reverse these tendencies.
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5.3 Approximate gradients

While the previous section examined learning dynamics under exact gradient updates, such
methods are rarely practical due to their reliance on complete knowledge of the environment
dynamics and reward functions. To address this limitation, we now consider agents that learn
via approximate gradient methods, focusing on policy gradient algorithms [32].

Figure 4] presents the average population reward over time for a population of size N = 50
trained with policy gradient updates using tabular strategy representations. As in the exact
gradient setting, each row corresponds to a different social dilemma and the columns compare
learning under fixed and random pairings.

Despite the noise introduced by policy gradient estimation, we observe a surprisingly con-
sistent replication of the dynamics observed under exact gradients, albeit over a longer learning
horizon. In all games studied, populations with random pairings consistently achieve higher
long-term rewards than those with fixed partners. Agents with fixed partners tend to converge
toward low-reward equilibria, characterized by mutual defection or locally optimal but globally
suboptimal cooperative strategies. In contrast, randomized interactions allow agents to escape
these traps and discover globally optimal strategy profiles.

While policy gradients yield an unbiased estimate of the exact gradient, the replication of
cooperative dynamics in this setting is non-trivial. In multi-agent environments, the learning
landscape is inherently non-stationary: each agent’s strategy update alters the environment ob-
served by others. Under these conditions, local gradient estimation errors can accumulate and
interact in complex ways, leading to drastically different strategy pairings and optimization tra-
jectories. Such instabilities could, in principle, derail the previous findings entirely. The fact
that partner randomization still leads to cooperative behavior, even under these noisy conditions,
demonstrates that randomized interactions create a powerful signal encouraging independent self-
ish agents to cooperate. And this powerful signal survives even under noisy updates and more
realistic environmental conditions.

5.4 NN parameterization

Tabular strategies offer a high degree of interpretability: each parameter directly corresponds to
an action probability, allowing for transparent analysis of population dynamics and behavioral
diversity. NNs, by contrast, introduce an abstract parameterization that enables scalability to
high-dimensional and complex state spaces, which is critical for many real-world MARL prob-
lems, but at the cost of reduced interpretability and increased training complexity.

In the tabular setting, strategies are initialized by sampling directly from a Dirichlet distribu-
tion over the action simplex. This allows for fine control over initial diversity: lower concentration
parameters yield more extreme (sparse) distributions, while higher values produce more uniform
mixtures. In the NN setting, we pre-train each network to match a tabular policy sampled from
the same Dirichlet distribution, ensuring that the initial output policy distribution (rather than
the network weights) conforms to the same statistical structure.

Despite exhibiting similar behavior at initialization, neural networks (NNs) are substan-
tially more sensitive to the concentration of the Dirichlet prior. illustrates this effect
in the repeated prisoner’s dilemma under random pairings. Populations initialized with low-
concentration priors (e.g., Dirichlet (0.5, 0.5)) reliably recover cooperative behavior in populations
of size 50. In contrast, populations initialized with more uniform priors (e.g., Dirichlet (1.0, 1.0))
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Figure 4: Impact of Interaction Stochasticity with Policy Gradients. A population of 50 agents with tabular, pa-
rameterized strategies was initialized using a Dirichlet (0.75,0.75) distribution. We compare the performance of fixed
pairings, where opponents remain fixed, with random pairings, where opponents are randomized each round. This
figure illustrates that, even with the additional noise introduced by approximate policy gradient updates, random
pairings can reverse defective outcomes. Despite the stochastic nature of strategy updates, population dynamics ef-
fectively guide agents toward cooperative equilibria.
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frequently fail to sustain cooperation. We focus here on the random pairings setting, as the fixed
pairings condition typically leads to rapid defection regardless of initialization, offering limited
insight. This highlights the critical role of initial behavioral diversity in stabilizing outcomes, even
under abstract function approximators like NNs.

This heightened sensitivity in neural networks (NNs) arises from the structural complexity of
their parameter space. Unlike tabular strategies, which directly specify action probabilities, NNs
encode these behaviors indirectly through a non-linear and high-dimensional weight vector 6.
This added abstraction introduces a disconnect between the parameters being optimized and the
resulting behavioral strategies, complicating the learning dynamics.

To formalize and visualize the disconnect between parameter updates and strategic behavior,
the following distance metrics are defined:

e NN parameter distance: the normalized L? distance between the weight vectors 6 of two
neural network strategies.

* Strategy (tabular) parameter distance: the normalized L? distance between the action prob-
ability distributions defined by two strategies.

¢ Behavioral distance:

Dpehavior (7-[1‘/ 7Tk) = |Vavg (7-51'/ P) - Vavg (Tfk/ P) ’ (12)
where Vi denotes the average performance of a strategy 7 against a fixed population P
(see Section [).

Since neural networks ultimately define tabular policies through their outputs, both the dis-
tance between internal weight vectors (NN parameter distance) and the distance between result-
ing action distributions (strategy parameter distance) can be measured. This dual representation
enables analysis of how differences in NN parameters translate into behavioral differences.

To investigate this relationship, 2,000 strategies were sampled randomly and the above dis-
tance metrics were computed for further analysis. ??a shows the relationship between NN pa-
rameter distance and the corresponding strategy parameter distance, while ??b compares strategy
parameter distance with behavioral distance across both representations.

??a reveals a weak correlation between NN parameter distance and the corresponding tabular
policy distance, highlighting the entangled nature of NN parameters. ??b further shows that
tabular strategies maintain a stronger correlation between parameter and behavioral distances,
whereas NN strategies exhibit little to no such alignment. This indicates that even minor changes
in NN weights can result in large and unpredictable shifts in behavior.

This instability presents a key challenge for preserving behavioral diversity during learning.
In NN-based systems, even a single training iteration can be sufficient to eliminate initial vari-
ation. The challenge is amplified by the overparameterized and non-linear structure of the NN
architecture. However, initializing neural strategies with low-concentration Dirichlet priors (e.g.,
Dirichlet(0.5,0.5)) promotes greater dispersion in parameter space, increasing the chance that
agents converge to distinct local optima. Although the behavioral space is not directly controlled,
this increased parameter-space variability can indirectly support a broader range of behaviors,
helping to sustain diversity that would otherwise collapse early in training.
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Figure 5: Parameterizing strategies with Neural Networks: A population of 50 agents is parameterized with neu-
ral network strategies using both Dirichlet (0.5,0.5) and Dirichlet (1.0,1.0). Exact gradients were used to update
strategies. Cooperation is consistently achieved with a Dirichlet (0.5,0.5) initialization, while it is unlikely with a
Dirichlet (1.0,1.0) initialization. Neural networks introduce complexities to the learning process, but these results
indicate that cooperation remains attainable when parameters are appropriately tuned.

This sensitivity can be mitigated however, by using natural gradients. In continuous time, the
natural gradient flow [33] uses the update %T = V] (7r), which corresponds to the learning dy-
namics used in the tabular setting. On the other hand, the naive gradient flow is % = V] (7).

Since "é—f = ‘fi—g‘;—f and Vo] (%) = (’%) ! V] (1), the natural gradient gives the equation

do dr\Tdm\ *

These learning dynamics account for the curvature of the parameterization via pulling back the
metric tensor on the underlying Euclidean space.

5.5 Efficient optimization

Random pairings have been shown to mitigate defection, even under exact and approximate self-
ish gradient updates. While these results have been validated in relatively simple Markov games,
a natural question arises as to whether such findings scale to more complex, high-dimensional
environments. To address this challenge, Latent Reinforcement Learning (LRL) is proposed, a novel
framework enabling strategy optimization within a learned, low-dimensional latent embedding
space.

Latent optimization techniques have been extensively applied in domains such as computer
vision and natural language processing to facilitate more efficient learning by focusing on se-
mantically meaningful, compressed representations. However, their application to multi-agent
reinforcement learning, and specifically to strategy optimization in game-theoretic settings, is a
significant advancement. The inherent non-stationarity and strategic interdependence of multi-
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Figure 6: Latent Reinforcement Learning (LRL). LRL comprises two phases: (1) pre-training an autoencoder to learn
compact strategy representations, using either parameter reconstruction or behavioral similarity, and (2) optimizing
latent strategy embeddings directly. The encoder is discarded after initialization, while a frozen decoder maps latent
embeddings back into full strategies deployed in the environment. Payoff gradients from interactions are backpropa-
gated through the decoder, enabling stable and efficient optimization within the latent space.

agent environments make direct parameter optimization noisy and sample-inefficient. LRL pro-
vides a promising approach by leveraging a structured latent space.

LRL operates in two stages. First, an autoencoder is trained to learn a compact and infor-
mative representation of tabular strategies by minimizing reconstruction error. This yields an
encoder E that maps strategies into a continuous latent space R?. Latent strategies are initialized
by sampling from a Dirichlet distribution and encoding these samples:

zo ~ E (Dirichlet (#)), zo € RY, (14)

where zy denotes the initial latent embedding of the strategy. During the second stage, optimiza-
tion proceeds directly in the latent space using gradient ascent updates:

zip1 =2t + V2] (24), (15)

where | (z;) represents the objective function evaluated on the decoded strategy corresponding
to z;. The decoder remains frozen during optimization, ensuring updates remain within the
manifold of plausible strategies. An overview of the framework is illustrated in

A novel and compelling advantage emerges from integrating LRL with the BSAE, a com-
bination not previously investigated. This integration combines the benefits of compact latent
space optimization with the unique ability to optimize directly in behavior space, resulting in
exceptional training efficiency. Beyond its immediate applications, this dual optimization frame-
work has the potential to transform a wide range of RL problems. Existing approaches focus on
parameter-space optimization, despite the fact that what truly matters is the resulting behavior.
Since indirect optimization of behavior via parameters is often inefficient, this approach could
open new pathways to faster, more interpretable, and more effective learning.

Results shown in demonstrate that latent optimization substantially improves sample
efficiency, using the same parameters and x-axis scale as for a fair comparison. The au-
toencoder effectively filters out high-frequency strategy details; for example, strategies differing
only in cooperation probability by small fractions such as 0.99 versus 0.9999 are nearly indistin-
guishable in latent space. By abstracting away such fine-grained details, LRL guides learning
toward behaviorally meaningful changes, reducing noise in gradient estimates and accelerating
convergence.
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The latent space functions as a form of structural regularization, much like how population
learning distributes learning pressure across diverse interactions. In LRL, this regularization
arises from dimensionality reduction, which restricts updates to a subspace capturing only the
most salient strategic features. Beyond improving sample efficiency, LRL provides a principled
mechanism for retaining the expressive capacity of neural networks while mitigating the adverse
effects of parameter sensitivity highlighted earlier. In high-dimensional NN weight spaces, small
perturbations can trigger abrupt, often erratic behavioral shifts, posing significant challenges
in non-stationary, multi-agent environments characterized by sharp local discontinuities. In con-
trast, latent optimization constrains learning to a smoother, low-dimensional manifold that filters
out noisy or redundant weight-level variation. This yields more behaviorally coherent updates
and stabilizes training dynamics.

6 Ablations and visualizations

6.1 Population size

To understand how population structure influences the emergence of cooperation, an ablation
study was conducted varying the population size from 2 to 50 in increments of 2. For each
population size, agent strategies were initialized by sampling from a Dirichlet distribution with
a concentration parameter of 0.75. This distribution ensures a moderate level of initial diversity,
preventing the population from starting in either highly uniform or overly chaotic configurations.
Each simulation was run until convergence, and results were averaged over 25 independent trials.
The average population reward is reported in

The results reveal that while small populations typically converge to defect-dominated out-
comes, populations as small as 10 begin to exhibit consistent convergence toward cooperative
equilibria. This trend becomes more robust as population size increases, with larger populations
reliably achieving high final rewards. Interestingly, the timescale of convergence remains largely
unaffected by population size. That is, while larger populations are more likely to discover coop-
erative strategies, they do not require more time to do so. These results have significant practical
implications suggesting that random interactions within a modestly sized and diverse group are
sufficient to reverse defection; unrealistically large populations are not required.

6.2 Diversity

There are two primary levers for increasing strategy coverage in a population: expanding popu-
lation size and modifying the diversity of initial strategy distributions. While larger populations
naturally span a broader region of the strategy space, a more direct and controllable method is
to adjust the Dirichlet concentration parameter used for initialization. In the previous section,
the effect of population size on cooperative convergence was explored. Here, the focus shifts to
how varying the Dirichlet concentration influences learning outcomes. To this end, a population
of 50 agents was initialized using concentration values in {0.25,0.5,0.75,1.0,1.25}, and learning
trajectories were examined across repeated trials and multiple games until convergence.

As shown in cooperative outcomes emerge reliably across a wide range of concen-
tration values. Interestingly, the most diverse setting (concentration = 0.25) produces the worst
performance, with final rewards significantly lower than in less diverse settings.
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Figure 7: Impact of Latent Optimization on Sample Efficiency.
mization is performed in the reduced latent space to enable a fair comparison. Latent optimization greatly enhances
sample efficiency, with random pairings leading to rapid convergence toward cooperative outcomes, while fixed pair-
ings remain prone to defection.
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Population Size vs. Payoff
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Figure 8: Influence of Population Size on Convergence Rewards: We investigate the impact of varying population
sizes on the dynamics of cooperation. Each player in the population was initialized with strategies drawn from a
Dirichlet (0.75,0.75) distribution, and the population learning framework was run for up to 500,000 interactions or
until convergence. Exact gradients were used to update strategies. The results show that larger populations support
more robust convergence to cooperative equilibria.
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To understand why excessive diversity can hinder learning in the IPD, consider how 7r; would
update their strategy under each of the following conditions:

1. 7; = 0, 71; =~ 0 (Mutual Cooperation):
Mutual cooperation is stable and beneficial, leaving no incentive to change; gradients are
near zero.

2. 7; = 0,7 &~ 1 (Sucker’s Payoff):
The cooperator receives the lowest possible payoff (S = 0), but the gradient is also near
zero, providing no learning signal.

3. ;= 1, = 0 (Temptation):
The defector is highly rewarded and thus sees no reason to change, reinforcing selfish
behavior.

4. 7; = 1,7; ~ 1 (Mutual Defection):
Although suboptimal, mutual defection is stable and offers no gradient incentive to coop-
erate.

In each of these cases, gradients either reinforce the same behavior or vanish. High initial di-
versity increases the likelihood that many agent pairs begin in one of these unproductive regions
of the strategy space. As a result, learning either stalls or exhibits unstable, oscillatory behavior.
This limitation is directly tied to the reward structure of the IPD, particularly the zero-valued
sucker’s payoff, which fails to provide a gradient for improvement in crucial scenarios. If the
payoff matrix were altered (e.g., S > 0), these effects might be mitigated.

Another observation from is that as the Dirichlet concentration parameter increases,
reducing diversity, so too does the slope in the optimization trajectory. This indicates that with
higher initial concentrations, strategy behavior changes more readily. This pattern is consistent
with the nature of the initialized strategies: lower concentrations generate more extreme “confi-
dent” agents (near 0 or 1) that are difficult to shift through learning. In contrast, higher concentra-
tions produce more moderate “undecided” agents with strategies closer to the midpoint. These
undecided agents are more sensitive to learning signals and require fewer reinforcing updates to
shift toward a confident strategy, resulting in faster adaptation and a steeper optimization slope.

While diversity is generally beneficial, its effectiveness is highly dependent on the structure
of the environment. In poorly defined or weakly informative environments, such as those where
certain payoffs fail to produce meaningful learning signals, excessive initial diversity can lead
agents into unproductive regions of the strategy space. This, in turn, can hinder effective learning
and destabilize collective dynamics, ultimately impeding convergence toward optimal outcomes.

6.3 Visualization

To gain deeper insight into how population dynamics naturally foster cooperation in social dilem-
mas, the IPD is simulated over 100,000 iterations with a population of 50 agents. Agent strategies
are recorded every 100 epochs for subsequent analysis. In the IPD, memory-one strategies are
represented as five-dimensional vectors (po, pcc, pcp, Ppc, Ppp), where each component corre-
sponds to the probability of cooperating given the outcome of the previous round. To facilitate
interpretation, these high-dimensional vectors are projected into a two-dimensional space.
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Figure 9: Effect of Initial Population Diversity on Equilibrium Rewards: We initialize a population of 50 agents
with tabular, parameterized strategies, updating them using exact gradients. This figure demonstrates how the initial
diversity of the population, controlled through the concentration parameters of the Dirichlet distribution, influences
convergence rewards. Initial population diversity can have a big impact on the optimization trajectory.
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While standard dimensionality reduction techniques such as Principal Component Analysis
(PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) are commonly used for such
tasks, they have notable limitations in this context. These methods typically rely on fixed, pre-
defined bases derived from the data distribution at a single point in time, such as the initial
population. However, as strategies adapt and evolve, these projections may lose interpretability.
Furthermore, these methods operate in parameter space and are agnostic to how strategies be-
have in practice; they do not capture how differences in parameters translate into differences in
outcomes.

To address these challenges, the behavior space autoencoder, introduced in previous sections,
is used to project policies into a behaviorally meaningful two-dimensional space. Recall that
this model is trained using pairs of strategies sampled from a Dirichlet (0.5,0.5) distribution,
ensuring diverse and representative coverage of the strategy space. Each strategy is encoded
into a low-dimensional latent vector, and the decoder predicts the expected payoffs when the
two strategies interact in the IPD. The model is optimized to minimize the discrepancy between
these predicted rewards and the true game-theoretic payoffs. This training objective ensures
that the latent space reflects behavioral equivalence: strategies that perform similarly, regardless
of their parameterization, are embedded near each other. Crucially, these embeddings remain
meaningful under any distribution of population strategies.

This approach constitutes a novel contribution to the analysis of evolving strategic behavior.
By grounding the projection space in observed behavioral consequences rather than structural
similarity, the behavior space autoencoder provides a consistent and interpretable framework for
understanding complex dynamics in policy evolution. Unlike static techniques, it retains inter-
pretability across time, even as the population distribution shifts dramatically. Beyond the spe-
cific context of the IPD, this methodology offers a general and flexible tool for interpretability in
dynamic multi-agent systems. The same principles can be applied to a wide variety of domains,
including reinforcement learning, evolutionary games, policy space exploration, and real-world
multi-agent coordination problems. By providing a way to visualize and analyze agent behavior,
the behavior space autoencoder opens new pathways for understanding and guiding emergent
behavior in complex adaptive systems.

The trained encoder is leveraged to visualize the evolving landscape of strategies through-
out the simulation. A complete visualization of the full evolutionary trajectory is provided in
the supplementary material, while a selection of representative snapshots is presented in ??. In
these figures, each agent’s strategy is depicted as a blue point embedded in the learned two-
dimensional behavior space. To provide behavioral context and aid interpretation, canonical
reference strategies, such as Tit-for-Tat (TFT), Always Cooperate (ALLC), Always Defect (ALLD),
and Generous Tit-for-Tat (GTFT), are also plotted. These strategies serve as well-known behav-
ioral archetypes: TFT initiates with cooperation and then reciprocates the opponent’s previous
action, promoting mutual cooperation; ALLC cooperates unconditionally, leaving it vulnerable
to exploitation; ALLD defects unconditionally, representing a purely selfish approach; and GTFT
modifies TFT by occasionally forgiving defections, thus helping sustain cooperation even in noisy
or error-prone environments.

The visualization reveals that the initial population is highly diverse, exploring a broad region
of the strategy space. However, within the first few hundred epochs, the population dynamics
lead the distribution to drift toward ALLD and cluster within a region characterized by extor-
tionate strategies. These extortionate strategies consistently punish defectors but also defect with
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some probability against cooperators, exploiting them for gain. Crucially, these strategies exhibit
negative reinforcement: when two extortionate strategies interact, the selfish-learning gradients
push both toward increasingly defecting behaviors, ultimately converging on ALLD. A similar
pattern emerges when extortionate strategies are paired with TFT; despite TFT’s reciprocity, both
agents tend to evolve toward defection in response to exploitation.

Escaping these defectionary feedback loops requires sufficient population diversity. In partic-
ular, forgiving strategies, characterized by high probabilities of cooperating following an oppo-
nent’s defection (high pcp), play a pivotal role in redirecting the learning dynamics of extortion-
ate strategies toward more cooperative outcomes. While these forgiving strategies are vulnerable
to exploitation in the short term, they are rewarded over a longer horizon as they serve to shift
the population toward cooperative dynamics. Importantly, with enough diversity, these forgiving
strategies naturally emerge through random interactions.

When player pairings are fixed, agents learn exclusively from repeated interactions with the
same partner, limiting their exposure to diverse behaviors. If both agents fall into a mutual de-
fection pattern, there are no external influences to break the cycle, making full defection (ALLD)
a likely outcome. While cooperation is not impossible under these conditions, it tends to be rare
and fragile. In contrast, when agents are randomly paired across the population, they are contin-
ually exposed to new behaviors. This variety introduces opportunities to escape local defection
traps and promotes the discovery and reinforcement of cooperative strategies.

This study reveals that forgiving strategies, those that offer opportunities for recovery af-
ter defection, can fundamentally reshape learning dynamics in multi-agent systems. In MARL
settings, such strategies provide a stabilizing force that prevents convergence to degenerate out-
comes. In systems with many agents, such as swarm robotics, decentralized energy grids, or
financial trading platforms, missteps and exploitation are inevitable. Forgiving strategies allow
agents to absorb occasional adversarial behavior without collapsing into permanent mistrust or
retaliation. This creates space for cooperation to recover and persist. From a systems design
perspective, incorporating mechanisms that promote or incentivize forgiveness, such as reward
shaping, memory-based policies, or structured exploration, can help unlock more resilient co-
operative equilibria. This insight also bridges to broader societal systems, where forgiveness
underlies everything from diplomatic treaties to community conflict resolution, reinforcing its
importance as a universal lever for long-term coordination.

7 Discussion

The central finding is that randomized interactions among selfish agents reverse defectionary out-
comes, a result that contradicts prior literature, which points to the fact that stochastic pairings
invariably degrade cooperation. In a diverse set of simple Markov games designed to capture
a wide range of realistic social dilemmas, agents matched with randomly drawn opponents not
only learn to cooperate but also reliably converge to the optimal strategy. Rather than serving
as a barrier, population-level stochasticity produces forgiving strategies that act as attractors in
the strategic landscape, drawing defectors back into cooperative clusters and guiding the entire
population toward mutually beneficial, optimal outcomes, achieved without any engineered in-
terventions such as reward shaping, partner selection, or centralized coordination. Randomized
interactions serve as a natural mechanism for robust optimization, enabling selfish agents to
develop strategies that perform reliably in the context of conflicting goals.
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Figure 10: Evolving Strategy Landscape. A sequence of snapshots illustrates the trajectory of agent embeddings
over training time. Initially, the population is highly diverse, exploring a wide range of strategies. By epoch 20,000,
extortionist strategies dominate, leading to lower overall payoffs. However, diversity persists, and the presence of
forgiving strategies creates gradients that shift the population toward cooperation. By epoch 100,000, most agents
have moved away from ALLD, converging toward more forgiving, prosocial behaviors. This evolution underscores
the role of transient interactions in shaping long-term dynamics and highlights how self-interested learning can lead
to cooperative outcomes.

The behavior space autoencoder is a truly novel advance in strategy representation. Unlike
conventional dimensionality-reduction methods, such as principal component analysis, that rely
on a fixed basis and can quickly become obsolete as strategy distributions evolve, the BSAE
learns latent embeddings directly from empirical payoff data. This behavior-centric approach
ensures that the representation remains meaningful even as new strategies emerge, clustering
them by functional payoff outcomes rather than superficial parameter similarities. As a result, the
BSAE not only makes it possible to visualize the strategic landscape but also provides a robust
foundation for subsequent optimization techniques that exploit these learned latent spaces to
accelerate convergence and improve sample efficiency.

Latent optimization techniques have become widespread in machine learning, yet their ap-
plication to game-theoretic multi-agent reinforcement learning remains novel. This work shows
that even optimizing simple parameter-space embeddings with Latent Reinforcement Learning
(LRL) yields strong gains in sample efficiency. However, when combined with the behavior space
autoencoder (BSAE), the benefits are amplified: first uncovering the geometry of strategy space
and then performing optimization directly within that manifold, this integrated framework shifts
multi-agent reinforcement learning away from blind parameter search toward behavior-aligned
learning, dramatically increasing sample efficiency.

Beyond overturning longstanding assumptions in multi-agent reinforcement learning, these
findings reveal a broader design principle for decentralized, heterogeneous systems: random-
ness, when combined with behavior-aware learning, can cultivate resilient cooperation. This
insight carries significant implications for robotics and autonomous systems. Multi-robot teams
and autonomous vehicle fleets frequently depend on carefully engineered coordination proto-
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cols that often falter when faced with real-world variability. Introducing randomized encoun-
ters among agents provides a more flexible and adaptive approach, enabling systems to organ-
ically discover robust, cooperative behaviors without explicit programming. For instance, in
autonomous traffic systems, vehicles interacting with a diverse and unpredictable set of partners
may naturally develop forgiving strategies that help maintain smooth flow and safety, even when
individual agents occasionally make errors. Similarly, in distributed computing or peer-to-peer
networks, random peer selection can promote tolerant behaviors, such as accepting intermittent
packet loss, that sustain overall system integrity amid decentralization and noise. In these con-
texts, randomness does not breed chaos but instead guides systems toward globally beneficial
outcomes that rigid, pre-scripted solutions frequently fail to achieve.

This dynamic echoes across numerous disciplines. In ecology, random disturbances prevent
any single species from dominating resources, thereby preserving biodiversity and maintaining
ecosystem resilience. Similarly, random interactions within agent populations break up uni-
form defection, enabling cooperative strategies to persist, propagate, and ultimately prevail. In
economics, decentralized markets often depend on random buyer-seller pairings, where trust
is cultivated not through heavy regulation but through repeated, diverse interactions, fostering
forgiving norms such as leniency following minor defaults. Sociology reveals comparable pat-
terns, where cooperation and forgiveness arise organically from informal, stochastic exchanges,
like gossip, reputation building, and interpersonal negotiation, rather than from top-down man-
dates. Political science further reinforces this insight: truth and reconciliation processes deliber-
ately introduce unpredictable pairings to disrupt cycles of conflict and rebuild social cohesion.
Across these varied fields, randomness acts as a catalyst for flexibility, diversity, and the emer-
gence of stable cooperative norms. These same principles hold true in artificial systems, where
forgiving strategies spontaneously emerge through diverse encounters, serving as powerful sta-
bilizers within complex, decentralized environments. Despite these promising insights, several
important limitations should be acknowledged. The results are derived from relatively simple
stochastic environments, games defined by memory-one strategies and clear payoff structures.
While such settings effectively isolate core social dilemmas, they abstract away many complexi-
ties inherent to real-world multi-agent systems. Domains with continuous action spaces, partial
observability, asynchronous decision-making, or large, heterogeneous populations present open
challenges not addressed in this work. Scalability, in particular, remains a central concern, as the
computational burden of modeling and optimizing over increasingly rich strategy spaces grows
rapidly. Nonetheless, the integration of the behavior space autoencoder (BSAE) with Latent Re-
inforcement Learning (LRL) offers a potential path forward. By enabling direct optimization
within a compressed, behaviorally meaningful latent space, this framework can dramatically re-
duce sample complexity and improve learning efficiency, making it a promising foundation for
scaling cooperation dynamics to more complex and realistic environments.

Several promising avenues for future research arise from this work. One key direction is to ex-
plore how forgiving strategies can be systematically introduced into existing populations to shift
their dynamics toward more cooperative and socially beneficial outcomes. Understanding how
to guide populations toward forgiveness could have broad implications for designing resilient
multi-agent systems in economics, robotics, and distributed computing. Another important area
is investigating the impact of different social network structures on cooperation dynamics. Since
real-world interactions are rarely fully random, studying how network topology influences the
emergence and stability of cooperative behaviors can inform the design of more effective decen-
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tralized systems and social platforms. Finally, a particularly timely direction is examining how
populations of self-interested large language models (LLMs) behave when faced with conflicts
of interest. Understanding whether and how population-level dynamics encourage cooperation
among LLMs is crucial as these models are increasingly deployed in settings requiring negotia-
tion, collaboration, or conflict resolution. Insights here could help ensure that Al systems align
better with human values and collective goals.

Code availability

Implementation details may be found at https://github.com/smerrillunc/population_learning.
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