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Abstract1

Conflicts of interest are ubiquitous in populations. When individuals interact, there are of-2

ten discrepancies between what is best for the individual and what is best for the larger group.3

Social dilemmas capture the differing incentives between individuals and groups, and specific4

models like the prisoner’s dilemma have been studied extensively in both evolutionary game5

theory and multi-agent reinforcement learning. However, at the intersection of these fields lies6

the understudied question of how population-level stochasticity affects collective learning dy-7

namics and emergent behaviors. In this work, we study the impact of random interactions in8

populations of greedy (purely self-interested) agents by examining simple, mixed-motivation9

stochastic games. Despite the fact that naive self-play leads to inefficient outcomes in coop-10

erative social dilemmas, we find that stochasticity in interaction partners within a population11

can reverse these outcomes, leading to much larger rewards, on average. This behavior is con-12

sistent across a variety of social dilemmas, and it suggests that transient (rather than stable)13

encounters can serve as a mechanism for eliciting prosocial behaviors in a population, even14

when all agents are self-interested.15

1 Introduction16

Multi-agent reinforcement learning (MARL) involves modeling and training autonomous agents17

that interact within a shared environment. In many real-world systems, agents operate inde-18

pendently, without access to centralized control, global reward signals, or direct communication19

(apart from reward signals obtained from interaction). Such decentralized settings are common20

in applications including autonomous vehicles navigating shared roadways [1, 2], algorithmic21

traders in financial markets [3, 4], distributed energy management systems [5, 6], and commu-22

nication networks managed by self-interested service providers [7]. In these environments, each23

agent typically maximizes its own individual reward, without regard for the goals, strategies, or24

learning processes of others. This form of selfish optimization, where agents update their poli-25

cies to improve only their personal return, presents significant challenges for achieving globally26

efficient outcomes.27

*Please direct correspondence to A.M. (amcavoy@unc.edu).
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These challenges are especially pronounced in social dilemmas, a class of multi-agent prob-28

lems characterized by a conflict between individual incentives and collective welfare. In a social29

dilemma, agents face a choice between defection (a strategy that yields higher personal reward at30

the expense of others) and cooperation (a strategy that may incur short-term individual costs but31

produces greater overall benefit when adopted widely). Classic examples include the prisoner’s32

dilemma, the public goods game, and the tragedy of the commons. When all agents pursue33

their narrow self-interest, the population often converges to Pareto-suboptimal equilibria, where34

mutual defection dominates despite the availability of mutually beneficial cooperative strategies.35

Social dilemmas are important to study both theoretically and practically. They model a wide36

array of real-world challenges, such as traffic congestion, resource depletion, climate action, and37

public health compliance, where the lack of coordination among autonomous agents leads to in-38

efficient or even catastrophic outcomes. Addressing these coordination failures is a fundamental39

problem in multi-agent systems.40

To date, the predominant approaches for fostering cooperation in MARL rely on centralized41

mechanisms, including shared objectives, joint training procedures, engineered reward shaping,42

or communication protocols. While effective in controlled settings, these methods often assume43

access to centralized observability, joint optimization, or structured communication which are44

rarely available in practice. In contrast, decentralized MARL considers the more realistic setting45

in which agents learn independently, act without coordination, and optimize selfishly. This46

formulation better captures real-world conditions, yet cooperation remains difficult to achieve47

under such constraints.48

One proposed solution is to leverage random encounters, where agents interact randomly49

with others drawn from the population and update their strategies based on the outcomes of50

those interactions. This setup introduces strategic diversity by exposing agents to a wide range of51

behaviors over time, without requiring persistent partners or structured coordination. However,52

prior work has largely concluded that random encounters alone are insufficient for sustaining co-53

operation. In response, studies have proposed additional mechanisms, such as partner selection,54

interaction opt-out, or reputation systems, to stabilize cooperative behavior. These mechanisms55

often rely on assumptions such as agent memory, observability of others’ behavior, or control56

over the interaction structure, conditions that may not hold in fully decentralized systems.57

This study revisits the role of random encounters in decentralized MARL and presents evi-58

dence that randomized partner interactions can, in fact, promote cooperation, even among selfish59

agents. Using Markov games that retain the core structure of social dilemmas it is shown that60

random encounters introduce population-level stochasticity that can help escape defective equi-61

libria and discover globally optimal strategies. This finding runs counter to the prevailing view62

that randomness in interactions inherently drives populations toward mutual defection.63

A central insight is the role of forgiving strategies in enabling cooperative dynamics. Forgiv-64

ing agents respond to defection not with retaliation, but with continued cooperation, tolerating65

short-term exploitation in exchange for long-term benefits. While seemingly vulnerable, these66

strategies can act as stabilizers in population dynamics, guiding selfish agents toward coopera-67

tive equilibria by creating a path back to mutual benefit. Their spontaneous emergence highlights68

the importance of population diversity and raises the question of whether such strategies can be69

deliberately introduced into learning populations to improve outcomes.70

To better understand and track these dynamics, a novel representation learning framework is71

introduced: the behavior space autoencoder (BSAE). This method constructs a low-dimensional72
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latent space that captures agent behaviors, enabling visualization, measurement, and analysis73

of population trajectories over the course of learning. Beyond diagnostics, this behavior space74

supports latent reinforcement learning, allowing policies to be directly optimized in the behav-75

ior space. This approach yields substantial improvements in sample efficiency and provides a76

powerful tool for steering population-level learning dynamics.77

Together, these results demonstrate that cooperation can emerge in decentralized systems78

composed of selfish learners, even in the absence of communication, memory, or central con-79

trol. Through random interactions and diverse policy landscapes, agents can self-organize into80

globally cooperative outcomes. This challenges long-standing assumptions in the MARL liter-81

ature and opens new avenues for designing decentralized systems capable of resolving social82

dilemmas.83

2 Related Work84

Game theory and multi-agent reinforcement learning. Game theory provides mathematical85

tools to analyze multi-agent interactions and has been used extensively in MARL research to86

study equilibrium concepts like Nash Equilibria and correlated equilibria [8]. While MARL re-87

search often centers on temporally and spatially extended environments and specialized bench-88

marks [9] (e.g., StarCraft II, Quake III), other efforts seek more general insights into multi-agent89

learning in smaller-scale social dilemmas [10–12]. These connections have been further explored90

in works [13] establishing formal frameworks for agent interactions.91

Social dilemmas. In social dilemmas [14], including the prisoner’s dilemma and public goods92

games, individual incentives are at odds with collective welfare, leading to conflicts of interest.93

In repeated or Markov-game formulations, agents can learn strategies conditioned on past states94

and actions, leading to a wealth of possible equilibria. Classic findings show that naive self-95

play often leads to defection, though specialized reward shaping [15, 16], partner choices [17,96

18] communication [19], or carefully tuned learning rates [learningRateVsreward, 20, 21] can97

sometimes restore cooperation [22–25].98

Population-based learning. Population-based methods typically train multiple agents in par-99

allel, often saving strategies along a training trajectory [26]. Our work is closely related but100

emphasizes random interaction partners each round and focuses on social dilemmas. Crucially,101

the goal is to lift the entire population to cooperative rewards, not just a single agent, without102

the use of institutions or other centralized control. The closest work to this study uses exact103

calculations in matrix games in conjunction with a partial differential equation to study collec-104

tive learning in effectively infinite populations [27]. There, it is noted that random interactions105

can change outcomes relative to learning in pairs, but the primary strategy space is the two-106

dimensional space of reactive strategies, which cannot accommodate multi-state games and even107

yields a limited behavioral space within matrix games.108

Population-based learning in social dilemmas. The prevailing view in the literature holds that109

population-based learning and random encounters are insufficient to overcome selfish behavior110

in social dilemmas. Previous studies have introduced additional mechanisms, such as partner111
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selection and the ability to opt out of interactions, as critical for enabling cooperation. For exam-112

ple, [28] propose a reactive partner selection mechanism. In each round, agents select a partner113

for a one-shot prisoner’s dilemma game and update their strategies using Q-learning. The study114

finds that cooperation can emerge when agents learn policies for partner selection; however, they115

find random partner selection strategies lead to widespread defection.116

A similar investigation by [29] explores a setting in which agents may opt out of interactions.117

Again employing Q-learning, the study shows that allowing agents to learn opt-out strategies118

fosters cooperation. Consistent with the findings of [28], this study also concludes that random119

interactions result in defective outcomes.120

Collectively, prior studies suggest that random encounters tend to produce inefficient out-121

comes in social dilemmas. However, the findings presented in this work challenge this narrative.122

Evidence is provided that a more general form of population-based learning, absent mechanisms123

such as engineered partner selection or opt-out options, can lead to the reversal of defection and124

the emergence of cooperation across a wide spectrum of social dilemmas. This suggests that the125

lack of cooperative outcomes reported in earlier work may not be an inherent limitation of popu-126

lation dynamics, but rather a consequence of specific experimental design choices. These include127

the reliance on Q-learning, the restriction to single-shot interactions, or an insufficient number of128

training episodes. These results hold important implications for the design and interpretation of129

multi-agent learning systems.130

3 Model131

3.1 Markov decision processes132

A Markov decision processes (MDP) is a mathematical framework for modeling sequential decision-133

making tasks involving a single agent operating within a probabilistic environment. Formally,134

an MDP can be defined as a tuple (S, A, r, P, γ), where:135

• S is the state space, representing all possible configurations or situations of the environment.136

Each s ∈ S corresponds to a specific, fully observable condition of the environment.137

• A is the action space, which consists of all possible actions the agent can take. The available138

actions may depend on the current state.139

• r : S× A → R is the reward function, which maps a state-action pair to a scalar reward value.140

This function quantifies the immediate benefit or cost to the agent of taking a specific action141

in a given state.142

• P : S × A → ∆ (S) is the transition probability function, where ∆ (S) denotes the set of proba-143

bility distributions over S. Specifically, P (s′ | s, a) represents the probability of transitioning144

to state s′ when the agent takes action a in state s.145

• γ ∈ [0, 1] is the discount factor, which determines the present value of future rewards. A146

lower γ indicates a preference for short-term rewards, while a higher γ values long-term147

rewards more heavily.148

An agent interacting with an MDP selects actions according to a strategy π : S → ∆ (A),149

which maps states to a distribution over actions. The agent’s objective is to identify a strategy150

4



that maximizes the expected cumulative discounted reward, which can be formally expressed as:151

Eπ

[
∞

∑
t=0

γtr (st, at)

]
, (1)

where s0 ∈ S is the initial state, at ∼ π (· | st), and st+1 ∼ P (· | st, at) for t ≥ 0.152

3.2 Markov games153

Markov games, also known as stochastic games, extend Markov Decision Processes (MDPs) to154

settings involving multiple agents, enabling the study of strategic interaction in shared, stochastic155

environments [30]. A Markov game with n agents can be described by the tuple:156 (
S, {Ai}n

i=1 , {ri}n
i=1 , P, γ

)
. (2)

where the state space S and the discount factor γ retain the same meaning as in the MDP frame-157

work. The multi-agent extension introduces agent-specific action sets, individualized reward158

functions, and a joint influence on the environment dynamics:159

• Each agent i ∈ {1, . . . , n} has its own action space Ai, from which it selects actions inde-160

pendently at each time step.161

• The reward function ri : S × A1 × · · · × An → R defines agent-specific rewards based on162

the current state and the joint actions of all agents.163

• The transition function P (s′ | s, a1, . . . , an) describes how the environment evolves given the164

joint actions of all agents.165

At each time step, agents choose their actions simultaneously, resulting in a joint action profile166

(a1, . . . , an). The system then transitions to a new state based on P, and each agent i receives a167

reward ri. Each agent aims to maximize its expected cumulative discounted reward:168

Eπ

[
∞

∑
t=0

γtri (st, a1,t, . . . , an,t)

]
, (3)

where π = (π1, . . . , πn) is the joint strategy profile.169

In contrast to single-agent MDPs, Markov games introduce multiple agents whose simultane-170

ous and potentially conflicting objectives transform the environment into a dynamic and strategic171

setting. Each agent must account not only for environmental dynamics but also for the evolving172

behavior of others. This multi-agent formulation enables the modeling of complex strategic in-173

teractions, such as competition, cooperation, and coordination, making it a powerful framework174

for analyzing decision-making in shared environments.175

3.3 Social dilemmas176

A social dilemma describes a scenario where individually rational decisions produce outcomes177

that are collectively inefficient or even harmful. More formally, it arises when the incentives of178

each agent align with actions that maximize personal benefit, yet when all agents act on these179
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incentives, the resulting joint outcome is worse for everyone than if they had coordinated differ-180

ently. This creates a core tension between optimizing for self-interest and achieving outcomes181

that are beneficial for the group as a whole.182

Social dilemmas are central to understanding cooperation and coordination challenges in183

multi-agent systems. They appear across a wide range of real-world domains. In environmental184

economics, for example, climate change mitigation presents a classic dilemma: individual ac-185

tors, such as countries or corporations, may benefit from continuing to emit greenhouse gases,186

avoiding the short-term costs of abatement. Yet, when all actors behave this way, the long-term187

global consequences are catastrophic. Similarly, in public goods provision, individuals may be188

tempted to withhold contributions while benefiting from others’ efforts, ultimately leading to189

underfunding or collapse of the shared resource.190

In the context of autonomous systems, social dilemmas present a growing challenge. Con-191

sider self-driving vehicles navigating a four-way stop. Each car has an incentive to proceed192

quickly to minimize delay. If one vehicle yields while others proceed, the system functions193

smoothly. But if all vehicles attempt to go first, collisions or deadlock can occur, degrading traffic194

flow and safety for everyone. Similarly, during lane merging or highway ramp access, vehicles195

that aggressively merge to minimize travel time may cause stop-and-go traffic or increase the risk196

of accidents. In contrast, systems that incorporate occasional yielding or cooperative timing can197

improve overall efficiency, though these behaviors are not individually optimal in the short term.198

These examples illustrate why social dilemmas are critical to study: they capture the essential199

tension between local decision-making and global outcomes. Designing agents that can recognize200

and navigate such tradeoffs is a key challenge in multi-agent learning, especially in domains201

where safety, fairness, and efficiency depend on sustained coordination. Understanding the202

mechanisms that enable cooperation to emerge and persist, such as reciprocity, reputation, or203

shared norms, is essential for building robust and socially aligned autonomous systems.204

3.4 Simple Markov games as social dilemmas205

This work focuses on a class of simple Markov games involving social dilemmas. These games are206

simple in the sense that they contain a small number of states, typically one or two, and a limited207

action set per agent, often consisting of two or three possible actions. Crucially, these games208

involve repeated interactions rather than single-shot encounters: agents interact over multiple209

time steps, which allows for the emergence of complex, adaptive strategies. Moreover, while we210

call these games simple the space of behaviors which they can model is far from simple. The211

dynamics of which are still not well understood in the literature.212

Compared to the complex Markov games typically studied in MARL, simple games offer a213

distilled view of the core strategic tensions that define real-world social dilemmas. By abstract-214

ing away domain-specific mechanics and environmental intricacies, these minimal environments215

help avoid conclusions that are overly dependent on the quirks of particular settings. This mir-216

rors the problem of overfitting in machine learning, where models may learn shortcuts and exploit217

spurious correlations, such as associating grass with the label “dog,” instead of learning robust,218

generalizable patterns. Similarly, agents trained in complex environments can develop brittle219

strategies that exploit incidental features of the environment rather than learning the underlying220

strategic structure.221

Simple Markov games mitigate the risk of overfitting to environmental intricacies by isolat-222

ing the core social dilemma itself. This isolation allows for theoretical insights that generalize223
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more reliably across different domains. Additionally, the simplicity of these games enables exact224

computation of rewards and learning gradients, enhancing interpretability and providing a high225

degree of analytical tractability. Consequently, these environments serve as powerful tools for226

studying the dynamics of learning, adaptation, and strategic behavior in multi-agent systems.227

The following sections describe specific social dilemmas studied, demonstrating the rich228

range of cooperative and competitive dynamics possible in repeated simple Markov games.229

Prisoner’s dilemma (PD): The prisoner’s dilemma is a canonical social dilemma, modeled here as230

a repeated game with a single state and two possible actions: cooperate (C) or defect (D). In each231

round, both agents simultaneously select their actions without knowledge of the other’s current232

choice. The resulting pair of actions determines their individual rewards, which are defined by233

a payoff matrix characterized by four key parameters: the reward for mutual cooperation (R),234

the punishment for mutual defection (P), the temptation payoff for unilateral defection (T), and235

the sucker’s payoff for unilateral cooperation (S). A commonly employed parameterization is236

(R, S, T, P) = (3, 0, 5, 1), which encapsulates the strategic tension central to the dilemma.237

Defection strictly dominates cooperation for the individual, meaning that regardless of the238

other agent’s action, choosing to defect yields a higher immediate reward. For example, if the239

other agent cooperates, defecting yields the temptation reward T = 5 rather than the mutual240

cooperation reward R = 3. If the other defects, defecting yields P = 1 instead of the sucker’s241

reward S = 0. Despite this incentive to defect, mutual cooperation results in a collectively better242

outcome, with each agent receiving R = 3 compared to P = 1 in mutual defection. This creates243

a tension between self-interest and the common good: while defection is individually rational, it244

leads to worse outcomes for both agents when both defect.245

In the repeated prisoner’s dilemma, also known as the iterated prisoner’s dilemma (IPD),246

these interactions occur over multiple time steps, allowing agents to adapt their behavior based247

on previous rounds. This repeated structure enables the development of complex strategies248

such as reciprocity, punishment, and forgiveness, which can sustain cooperation despite the249

temptation to defect in any single round. By conditioning actions on past behavior, agents can250

build trust and enforce social norms, making the repeated prisoner’s dilemma a fundamental251

framework for studying how cooperation can emerge and be maintained in multi-agent systems252

facing conflicting incentives.253

Two-state coin game: The original coin game, introduced by Lerer and Peysakhovich [31], is a254

spatially structured multi-agent Markov game designed to capture the complexities of cooper-255

ation and competition in dynamic, spatially extended environments. In this setup, two agents256

occupy a grid world where red and blue coins appear randomly at different locations. Each257

agent is assigned a color, red or blue, and receives positive rewards for collecting coins of any258

color. Critically, when an agent collects a coin of the opponent’s color, it also imposes a penalty259

on the other player. This setup captures a social dilemma with a spatial component: agents must260

balance immediate self-interest against the longer-term consequences of their actions in a shared261

space.262

The two-state coin game removes all the “non-rewarding” states from the original environ-263

ment. In this simplified version, each state corresponds solely to whether the coin present is264

red or blue, and the rewards match those of the original game when each agent is positioned265

immediately adjacent to the coin. By eliminating sparse, non-informative states, the two-state266

coin game offers improved learning efficiency and yields results that are easier to interpret.267
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Studying this two-state coin game is vital for understanding learning dynamics in spatially268

extended social dilemmas, as many real-world social interactions unfold in spatially structured269

settings, ranging from competition over natural resources in ecological systems to coordination270

among autonomous vehicles in traffic networks. Examining algorithms within this streamlined271

yet spatially meaningful framework provides valuable insights into how spatial factors influence272

learning, strategy development, and the delicate balance between cooperative and competitive273

behaviors. Such insights are critical for designing resilient multi-agent systems capable of navi-274

gating and resolving complex spatial social dilemmas.275

Nonlinear donation game: The donation game is a classical model for studying altruism and276

cooperation. In its original form, each agent may choose to incur a cost c to provide a benefit277

b to another agent. traditionally, the donation game assumes a linear relationship between the278

cost incurred and the benefit conferred. That is, cooperation always improves group welfare,279

and more cooperation is always better. However, this assumption fails to capture a range of real-280

world situations in which increasing levels of cooperation may produce diminishing rewards,281

or even net harm. For example, in public health, a moderate level of social distancing might282

effectively reduce disease spread with tolerable inconvenience, whereas extreme isolation may283

impose excessive social and economic costs that outweigh the additional benefits.284

To model this non-linearity, the nonlinear donation game introduces a richer action space and285

a more nuanced reward structure. Instead of two actions (cooperate or defect), each agent now286

has three: one defection action (D) and two levels of cooperation (c1 and c2). These represent287

increasing degrees of altruistic behavior. Specifically, c1 incurs a smaller cost and delivers a288

smaller benefit b1, while c2 incurs a larger cost and delivers a larger benefit b2, with c2 > c1 > 0289

and b2 > b1 > 0. Importantly, the game is constructed so that the net social value (i.e., total290

benefit minus total cost) is maximized not at the highest cooperation level, but at the moderate291

one: b1 − c1 > b2 − c2 > 0.292

This non-linearity introduces a fundamentally different strategic challenge. Unlike in the293

prisoner’s dilemma, where increasing cooperation is unambiguously better for the group, here294

the socially optimal outcome occurs at an intermediate level of cooperation. Full cooperation may295

be too costly to justify the additional benefits, while no cooperation leaves significant potential296

gains unrealized. As a result, the game poses a subtler learning problem: agents must not only297

learn to cooperate but also learn how much to cooperate. As such, the nonlinear donation game298

provides a compelling testbed for understanding whether learning algorithms merely default to299

maximal cooperation or are capable of discovering socially optimal behaviors.300

Ecological prisoner’s dilemma: This game extends the classic prisoner’s dilemma by adding301

an additional state to introduce ecological feedback. The first state mirrors the standard setup,302

in which agents face the familiar tension between short-term self-interest and long-term group303

benefit. However, repeated mutual defection in this state leads to a transition into a second state304

that represents environmental degradation, characterized by uniformly negative rewards for all305

joint actions. This models the long-term consequences of over-exploitation, such as resource306

depletion, pollution, or ecological collapse.307

The key innovation in this variant is the coupling of agent behavior with environmental dy-308

namics: the agents’ collective actions directly influence the transition between states, embedding309

the strategic dilemma within a broader ecological context. Unlike in the standard prisoner’s310

dilemma, where the incentive to defect dominates, the looming threat of environmental collapse311
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introduces a natural incentive to maintain cooperation as a preventive measure. This shift re-312

frames the problem as not just a question of whether agents will cooperate, but whether they can313

internalize the long-term consequences of their actions through learning.314

Studying this ecological variant is important for several reasons. First, it provides a principled315

way to investigate how learning agents respond when the rewards are endogenous and evolve316

as a function of behavior, rather than being fixed. Second, it sheds light on whether cooperation317

can be sustained in the face of long-term collective risk. By comparing agent behavior in this318

setting to that observed in the classic prisoner’s dilemma, we can examine whether the presence319

of a natural incentive to cooperate leads to qualitatively different learning dynamics or long-term320

equilibria. This has direct relevance to real-world challenges in climate strategy, sustainability,321

and commons governance, where ecological feedback loops are both powerful and pervasive.322

3.5 Adaptation and learning323

To analyze the emergence of cooperation in social dilemmas, a population of N agents is con-324

sidered, engaging in repeated pairwise interactions. Agents adopt stochastic strategies that are325

selfishly updated via gradient ascent, facilitating the study of strategy dynamics under decen-326

tralized learning in a range of environments.327

Strategy representations. Strategies are represented as memory-one strategies which condition328

behavior solely on the outcome of the previous round of interaction. Formally, let A denote the329

set of possible actions. Since each agent observes both their own and their opponent’s action330

from the previous round, there are |A|2 possible joint actions to condition on. A memory-one331

strategy defines, for each such joint action pair
(

at−1
i , at−1

j

)
∈ A×A, a probability distribution332

over next actions:333

π
(

at
i | at−1

i , at−1
j

)
∈ ∆ (A) , (4)

where ∆ (A) is the probability simplex over actions and t is the round of play. While memory-one334

strategies abstract away the full history of play, they do not limit the expressiveness of the strategy335

space: any strategy that can be represented as a full memory can also be represented using336

a memory-one strategy. Moreover, restricting attention to memory-one strategies significantly337

reduces the size of the state space, thereby enhancing both learning efficiency and interpretability.338

We consider two types of strategy parameterizations for implementing memory-one strate-339

gies: tabular strategies and neural network strategies.340

Tabular strategies represent the strategy explicitly as a lookup table over the |A|2 previous341

joint action pairs. Each entry in the table specifies a distribution over the agent’s next action.342

This discrete and fully specified structure makes tabular strategies highly interpretable. Their343

interpretability makes them ideally suited for analyzing behavioral dynamics in simple, well-344

controlled environments. However, tabular strategies scale poorly as the action space grows or345

when the environment includes richer state information. Their use is thus limited to environ-346

ments with small, discrete input spaces.347

Neural network strategies offer a more scalable alternative. In our framework, they are still348

memory-one in structure: the network takes as input a representation of the previous joint action349
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(
at−1

i , at−1
j

)
, encoded for instance as a one-hot vector, and outputs a distribution over actions:350

πθ

(
at

i | at−1
i , at−1

j

)
= softmax

(
fθ

(
at−1

i , at−1
j

))
, (5)

where fθ is a neural network with parameters θ. Neural strategies are capable of generalizing351

across input patterns and can scale to environments with large or continuous observation spaces.352

However, this expressiveness comes at a cost: the function learned by the network is not easily353

interpretable, and small changes in parameters can induce correlated, global changes in behavior.354

This makes it difficult to attribute specific actions or outcomes to identifiable behavioral rules.355

Gradient-based strategy updates. Agents use gradient based learning rules to update their356

strategies selfishly. That is, they ignore the reward of their opponent and seek only to maximize357

their own long-term expected reward. Let πi and πj denote the strategies used by agents i and j,358

respectively. The quality of strategy πi when facing πj is quantified by the expected discounted359

reward:360

U
(
πi, πj

)
= Eτ∼(πi ,πj)

[
∞

∑
t=0

γtrt
i

]
, (6)

where τ is a trajectory induced by the joint strategies, rt
i is the reward received by agent i at time361

t, and γ ∈ (0, 1) is the discount factor. The gradient ascent update rule modifies strategies in the362

direction of the maximal gradient:363

πt+1
i = πt

i + η∇πt
i
U
(

πt
i , πt

j

)
, (1)

where η is the learning rate. These updates are local and selfish: each agent optimizes its own364

reward without considering the broader population dynamics.365

In simple Markov games ∇πi U
(
πi, πj

)
can be computed explicitly. In complex environments366

where exact gradients are intractable, agents estimate ∇πi U
(
πi, πj

)
using policy gradient methods.367

These approaches optimize a parameterized policy, π : S → ∆ (Ai) by maximizing the expected368

return,369

U (θ) = Eτ∼πθ

[
∞

∑
t=0

γtrt

]
. (7)

Using the log-derivative trick, the gradient can be expressed as:370

∇θU (θ) = Eτ

[
∞

∑
t=0

∇θ log πθ (at | st) · Rt

]
, (8)

where Rt = ∑∞
k=t γk−trk is the return from time t. This formulation allows the use of sampled371

episodes to estimate gradients, enabling learning in environments where explicit models are372

unavailable. The behavior of selfish agents in social dilemmas is studied using both exact and373

policy gradients.374
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Population-level learning dynamics. This study investigates the impact of population stochas-375

ticity in social dilemmas through a framework where a population of N agents repeatedly partici-376

pates in decentralized, pairwise interactions governed by the learning rules described above. The377

learning process unfolds over many rounds of interaction. In each round, the population is par-378

titioned into N/2 pairs. Each pair plays a repeated Markov game using their current strategies379

at time t. For a given interaction between agent i and agent j, the outcome is evaluated using the380

expected discounted reward U
(
πi, πj

)
. Agent j receives a reward U

(
πj, πi

)
. These rewards are381

used to update each agent’s policy using the gradient-based learning rules described in previous382

sections.383

After the policies are updated, the population is re-paired for the next round of interaction.384

We consider two distinct pairing mechanisms, which represent qualitatively different interaction385

structures:386

• Fixed Pairings: Each agent is paired with the same partner across all rounds. This regime387

corresponds to standard “naive self-play,” where agents co-adapt in isolation.388

• Random Pairings: Agent pairings are assigned randomly after each round. This simulates389

a well-mixed population in which agents interact with a broad and changing set of partners390

over time. Random pairing introduces population-level stochasticity and exposes agents to391

a greater variety of strategies, potentially enabling more robust and generalizable forms of392

cooperation.393

A visual summary of this learning and adaptation process is provided in ??. This population-394

based learning framework enables a systematic exploration of how the structure of social inter-395

action influences the trajectory of behavioral evolution. In particular, it offers insight into how396

diverse encounters and patterns of social exposure affect the resolution of social dilemmas, in-397

cluding the emergence and stability of cooperation in the absence of coordination or centralized398

control.399

4 Strategy Initialization400

The way strategies are initialized in population-based learning sets the stage for how agents401

explore and grow through interaction. When agents begin with a broad range of strategies,402

they experience a richer variety of behaviors, leading to more effective learning. However, if the403

initialization is too narrow, agents become confined to a small set of behaviors, which limits the404

benefits of population-based learning and can make it no better than naive self-play.405

It is important to understand that diversity in the parameter space alone does not guarantee406

meaningful diversity in behavior. Parameter space diversity refers to variation in the underlying407

numerical parameters that specify a strategy. For example, in neural network strategies, this cor-408

responds to differences in the network weights; in tabular strategies, this means different proba-409

bility values assigned to actions. While parameter diversity measures how “far apart” strategies410

are in terms of their internal representation, it does not necessarily reflect how differently those411

strategies behave in practice.412

In contrast, behavior space diversity is concerned with the variation in the observable con-413

sequences of deploying a strategy. In multi-agent settings, this means how a strategy’s actions414

influence the rewards it obtains when interacting with other agents. Formally, we define the415
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behavior of a strategy πi with respect to a population P as the expected reward achieved when416

interacting with strategies sampled from P :417

Vavg (πi,P) = Eπj∼P
[
U
(
πi, πj

)]
. (9)

This definition grounds behavior in the functional impact of a strategy within its interaction418

context, rather than its internal parameterization.419

This distinction is crucial because many environments exhibit nonlinear reward dynamics,420

where uniform sampling of the parameter space often does not produce a uniform or meaningful421

coverage of behavioral space. Small parameter changes may correspond to large behavioral422

differences or none at all. Conversely, in linear reward environments, parameter variation more423

directly translates to variation in behavior and payoffs.424

To demonstrate the influence of strategy initialization on parameter diversity and behavior,425

two complementary approaches based on autoencoders are developed: one that captures vari-426

ation in strategy parameters, and another specifically designed to capture behavioral variation427

through reward outcomes.428

4.1 Parameter space autoencoder429

The parameter space autoencoder, shown in Figure 1a, is trained to compress and reconstruct430

high-dimensional strategy representations, optimizing for minimal reconstruction loss. Given a431

strategy π, the encoder E maps it to a low-dimensional latent vector z = E (π), and the decoder432

D attempts to reconstruct π from z, such that the reconstruction loss433

Lrec = ∥π − D (E (π))∥2 (10)

is minimized.434

This setup ensures that the latent space captures the structure of the parameter space and435

clusters similar parameters together. Note, however, that it is agnostic to the actual behavior436

of strategies. Two strategies that differ significantly in parameter space may lead to indistin-437

guishable in-game behavior. Moreover, the parameter space autoencoder only helps visualize438

parameter space diversity of strategies and does not capture meaningful behavioral distinctions.439

4.2 Behavior space autoencoder440

To specifically capture agent behavioral, a behavior space autoencoder is introduced. This model441

takes pairs of strategies
(
πi, πj

)
as input and learns to predict their long-term expected rewards,442

denoted U
(
πi, πj

)
.443

The behavior space autoencoder consists of an encoder E that maps each strategy to a latent444

representation zi = E (πi) and zj = E
(
πj
)
. The decoder then takes

(
zi, zj

)
as input and outputs445

the predicted rewards to each player when these strategies interact. The loss function Lpayoff is446

defined as:447

Lreward =
∣∣U (

πi, πj
)
− Û

(
E (πi) , E

(
πj
))∣∣2 . (11)

This architecture enforces a crucial inductive bias: strategies that produce similar outcomes448

in terms of interaction rewards are embedded nearby in the latent space, even if their param-449

eterizations differ drastically. In this way, the behavior space autoencoder captures behavioral450

equivalence or similarity and emphasizes diversity in terms of strategic effect rather than raw451

structure, as shown in Figure 1b.452
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(a) Parameter space autoencoder. This autoencoder is trained to minimize reconstruction loss between the original and
decoded strategies, compressing strategies purely based on their raw parameter vectors. As a result, the latent space clusters
strategies with similar parameterizations, regardless of how they behave during interactions.

(b) Behavior space autoencoder. In contrast to the parameter space autoencoder, this model embeds strategies based on
how they interact in the environment. It takes pairs of strategies and predicts their expected rewards, learning a latent space
where strategies with similar behavior and reward profiles are placed nearby. This behavior-aware representation captures
the strategic equivalence and diversity that arise from actual gameplay outcomes, even if the underlying parameterizations
differ widely.

Figure 1: Autoencoder Architectures for Strategy Embedding. These diagrams illustrate two distinct approaches to
creating strategy embeddings. The parameter space autoencoder (a) focuses on compressing raw parameter vectors,
while the behavior space autoencoder (b) emphasizes strategic behavior as inferred from expected interaction payoffs.
Together, these models enable both structural and functional interpretations of the strategy landscape.
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4.3 Visualizing parameter and behavioral diversity453

To understand the impact of strategy initialization, two initialization schemes are analyzed us-454

ing both a pre-trained parameter space autoencoder and a pre-trained behavior space autoencoder,455

which embed memory-one strategies for the prisoner’s dilemma into a two-dimensional space.456

These embeddings facilitate interpretation of both parameter variation and behavioral diversity457

as reflected in the reward structure.458

We consider two initialization schemes:459

• Dirichlet (1.0): Equivalent to uniform sampling over the simplex.460

• Dirichlet (0.1): Favors sparse strategies with probability mass near the corners [0, 1].461

A total of 100,000 strategies are sampled from each distribution and processed through the462

respective encoders. The resulting embeddings are visualized in Figure 2.463

Figure 2a and Figure 2c show the embeddings produced by the traditional autoencoder. When464

sampling from Dirichlet (1.0), the strategies appear broadly distributed in parameter space, sug-465

gesting high surface-level diversity. In contrast, Dirichlet (0.1) generates tighter clusters in pa-466

rameter space, implying that the sampled strategies seem more similar in terms of their raw467

parameters.468

However, a contrasting picture emerges when the embeddings are examined from the per-469

spective of actual strategic behavior. Figure 2b and Figure 2d present embeddings derived from470

the BSAE, corresponding to strategies sampled from Dirichlet (1.0) and Dirichlet (0.1), respec-471

tively. Notably, Figure 2d reveals that strategies sampled from Dirichlet (0.1) span a wide and472

comprehensive region of behavior space, including its extreme edges. This is significant, as it473

highlights the presence of diverse and extreme strategic profiles within the prisoner’s dilemma474

behavior space.475

Efficient coverage of this behavior space is critical because incorporating these behavioral476

extremes allows agents to learn from the broadest possible range of strategies. When initialized477

in this manner, agents can interpolate between a more extensive set of strategies, overcoming the478

limitations imposed by their initial parameterization. In contrast, Figure 2b shows that, despite479

the apparent parameter-level diversity produced by Dirichlet (1.0), many behavioral extremes480

remain unexplored. Even with 100,000 sampled strategies, certain crucial regions of the behavior481

space are left uncovered, potentially restricting an agent’s ability to learn from key strategic482

profiles during training.483

This distinction is crucial: diversity in parameter space does not necessarily equate to di-484

versity in behavior space. While Dirichlet (1.0) spreads samples broadly across the parame-485

ter simplex, it does not fully cover the behavioral landscape and therefore misses high-impact486

strategies located at the edges of the behavior spectrum. Conversely, strategies sampled from487

Dirichlet (0.1), despite exhibiting less apparent diversity in parameter space, actually achieve488

broad and comprehensive coverage of behavior space. Thus, sampling from a Dirichlet prior with489

a low concentration parameter offers a powerful mechanism for initializing strategies that ensure490

rich behavioral diversity, enabling more effective exploration and learning within population-491

based frameworks.492

14



Figure 2: Visualization of 100,000 sampled strategies from two Dirichlet distributions, embedded using a traditional
autoencoder (Figures a and b) and a payoff-based autoencoder (Figures c and d). (a) Dirichlet (1.0) with parameter
space autoencoder shows widespread coverage in parameter space. (b) Dirichlet (1.0) with behavior space autoen-
coder fails to capture the extremes (corners) of the behavior distribution. (c) Dirichlet (0.1) with parameter space
autoencoder shows tighter parameter clusters. (d) Dirichlet (0.1) with behavior space autoencoder reveals broad be-
havioral coverage, particularly at the extremes of the strategy space. These results illustrate that parameter diversity
does not necessarily translate to behavioral diversity and motivate the use of sparse Dirichlet priors to ensure expo-
sure to qualitatively distinct strategic behaviors.
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5 Experiments493

5.1 Implementation details494

The proposed population learning framework was evaluated across the four social dilemmas495

defined in Section 3.2. These games differ in their action spaces and payoff structures, and496

involve repeated interactions. After each round, agents updated their strategies using either497

exact or approximate policy gradients.498

In the exact gradient setting, long-term expected rewards were computed precisely using499

full knowledge of the environment dynamics or exact value computation. This allowed for a500

higher learning rate of 0.1, as the precise gradient information reduced the risk of destabilizing501

updates. In contrast, approximate gradients were computed using vanilla policy gradient with502

rollouts of 250 time steps. Due to the increased variance in these estimates, a smaller learning503

rate of 0.05 was used to ensure stability. All updates were performed using stochastic gradient504

descent (SGD), which is better suited for non-stationary multi-agent environments. SGD provides505

more stable dynamics compared to adaptive optimizers like Adam, which may overfit to rapidly506

changing local gradients.507

Both tabular and neural network (NN) strategies were implemented. In the tabular setting,508

strategies were stored as explicit state-action mappings, with each value updated independently.509

For neural strategies, each was represented by a feedforward neural network with a single hidden510

layer. The hidden layer had a width equal to four times the size of the state-space. Initial511

strategies were sampled independently for each agent using a Dirichlet distribution over the512

action simplex. This initialization method enabled controlled exploration of initial diversity.513

Performance was assessed using the average total population reward. This metric serves as514

a meaningful proxy for social efficiency and cooperation: higher average rewards indicate not515

only successful individual behavior but also emergent alignment among agents. Importantly, this516

metric captures more than just full cooperation, especially in games where blindly maximizing517

cooperation can be suboptimal, making it a robust measure of overall population-level effective-518

ness. The learning framework was evaluated against a baseline of naı̈ve self-play, in which agents519

interact with fixed opponents that do not change after each round. All results are reported as520

averages over 10 random seeds.521

5.2 Exact gradients522

Figure 3 summarizes the learning dynamics of populations of size N = 50, trained using exact523

gradient updates and tabular strategies, across several distinct Markov games. Each row in the524

figure corresponds to a different social dilemma, while the two columns compare two experi-525

mental conditions: (1) fixed pairings, where agents are matched with the same partner across526

rounds of the repeated game, and (2) random pairings, where partners are reshuffled after each527

round. The y-axis reports the average population reward over time (x-axis), serving as a proxy528

for the overall social welfare.529

Across all games, a consistent and robust pattern emerges: random pairings systematically530

outperform fixed pairings in terms of long-run average population reward. This result is particu-531

larly striking because it holds across a diverse set of social dilemmas, each with its own strategic532

structure and payoff landscape. The presence of partner randomization significantly improves533
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learning outcomes, enabling agents to escape from local equilibria associated with mutual defec-534

tion and to discover globally superior strategies.535

In the standard repeated prisoner’s dilemma, agents paired with the same partner learn536

to defect almost immediately. This behavior leads to low and stagnant population rewards.537

In contrast, when partners are randomized after each round, agents initially follow a similar538

trajectory toward defection, but then exhibit a strong and sustained reversal. Over time, the539

population converges toward strategies that support cooperation, leading to a markedly higher540

average reward. This rebound suggests that exposure to a broader variety of partner strategies541

encourages the evolution of more generalizable, cooperative strategies.542

Similar trends are observed in the coin game and the nonlinear donation game. Under fixed543

pairings, agents again fall into early defection traps, never recovering to cooperative norms.544

However, random pairings lead to recovery and eventual convergence toward higher-reward545

outcomes. The nonlinear donation game is particularly illustrative, as it features a non-monotonic546

relationship between cooperation and global welfare. Unlike simpler dilemmas where maximum547

cooperation aligns with the global optimum, here it is an intermediate level of cooperation that548

yields the highest population reward. Remarkably, the population with randomized partners549

does not merely maximize cooperation blindly; rather, it converges to this more nuanced global550

optimum. This finding underscores the capacity of diverse interactions to enable agents to learn551

not just pro-social behavior, but strategically optimal cooperation.552

The ecological variant of the prisoner’s dilemma introduces a modified incentive structure553

in which cooperation is more naturally rewarded. In this case, both fixed and random pairings554

result in an increase in cooperative behavior. Agents in fixed pairs gradually learn to cooper-555

ate roughly two-thirds of the time, resulting in an average population reward just above –1, a556

significant improvement over the mutual defection outcome of –5. Nevertheless, even in this557

more favorable environment, fixed pairs plateau below the optimal outcome. In contrast, ran-558

dom pairings drive the population to full cooperation, achieving the global maximum. This559

again highlights the role of interaction diversity in promoting socially efficient outcomes, even in560

games where cooperation is already partially incentivized.561

Overall, these findings demonstrate that the structure of partner interaction significantly562

shapes the emergent strategies in multi-agent learning. Fixed pairings promote myopic, partner-563

specific strategies that are prone to early convergence on suboptimal equilibria. In contrast,564

randomization introduces variability and strategic uncertainty, which serves as a form of reg-565

ularization or exploration, driving the system toward more generalizable and socially optimal566

solutions.567

These results connect between MARL and foundational insights from evolutionary game568

theory, where mechanisms that promote social mixing are known to support the emergence569

of cooperation. Our findings provide both algorithmic and empirical reinforcement of these570

theoretical principles in the context of modern learning agents. By showing that randomized571

partner interactions consistently lead to more favorable collective outcomes, this work bridges572

the gap between evolutionary models of cooperation and contemporary MARL frameworks.573

From a design standpoint, the results suggest that artificial systems composed of interacting574

agents should incorporate dynamic and heterogeneous partner interactions to avoid pathological575

convergence to selfish or suboptimal equilibria. Partner randomization and structural diversity576

act as an implicit curriculum, encouraging broader exploration and generalization.577
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Figure 3: Impact of Interaction Stochasticity with Exact Gradients. A population of 50 agents with tabular, param-
eterized strategies was initialized using a Dirichlet (0.75, 0.75) distribution. We compare the performance of stable
pairings, where opponents remain fixed, with random pairings, where opponents are randomized each round. This
figure demonstrates that fixed interactions often lead to a rapid convergence to a suboptimal equilibrium, while
stochastic interactions, characterized by randomly changing opponents, can reverse these tendencies.
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5.3 Approximate gradients578

While the previous section examined learning dynamics under exact gradient updates, such579

methods are rarely practical due to their reliance on complete knowledge of the environment580

dynamics and reward functions. To address this limitation, we now consider agents that learn581

via approximate gradient methods, focusing on policy gradient algorithms [32].582

Figure 4 presents the average population reward over time for a population of size N = 50583

trained with policy gradient updates using tabular strategy representations. As in the exact584

gradient setting, each row corresponds to a different social dilemma and the columns compare585

learning under fixed and random pairings.586

Despite the noise introduced by policy gradient estimation, we observe a surprisingly con-587

sistent replication of the dynamics observed under exact gradients, albeit over a longer learning588

horizon. In all games studied, populations with random pairings consistently achieve higher589

long-term rewards than those with fixed partners. Agents with fixed partners tend to converge590

toward low-reward equilibria, characterized by mutual defection or locally optimal but globally591

suboptimal cooperative strategies. In contrast, randomized interactions allow agents to escape592

these traps and discover globally optimal strategy profiles.593

While policy gradients yield an unbiased estimate of the exact gradient, the replication of594

cooperative dynamics in this setting is non-trivial. In multi-agent environments, the learning595

landscape is inherently non-stationary: each agent’s strategy update alters the environment ob-596

served by others. Under these conditions, local gradient estimation errors can accumulate and597

interact in complex ways, leading to drastically different strategy pairings and optimization tra-598

jectories. Such instabilities could, in principle, derail the previous findings entirely. The fact599

that partner randomization still leads to cooperative behavior, even under these noisy conditions,600

demonstrates that randomized interactions create a powerful signal encouraging independent self-601

ish agents to cooperate. And this powerful signal survives even under noisy updates and more602

realistic environmental conditions.603

5.4 NN parameterization604

Tabular strategies offer a high degree of interpretability: each parameter directly corresponds to605

an action probability, allowing for transparent analysis of population dynamics and behavioral606

diversity. NNs, by contrast, introduce an abstract parameterization that enables scalability to607

high-dimensional and complex state spaces, which is critical for many real-world MARL prob-608

lems, but at the cost of reduced interpretability and increased training complexity.609

In the tabular setting, strategies are initialized by sampling directly from a Dirichlet distribu-610

tion over the action simplex. This allows for fine control over initial diversity: lower concentration611

parameters yield more extreme (sparse) distributions, while higher values produce more uniform612

mixtures. In the NN setting, we pre-train each network to match a tabular policy sampled from613

the same Dirichlet distribution, ensuring that the initial output policy distribution (rather than614

the network weights) conforms to the same statistical structure.615

Despite exhibiting similar behavior at initialization, neural networks (NNs) are substan-616

tially more sensitive to the concentration of the Dirichlet prior. Figure 5 illustrates this effect617

in the repeated prisoner’s dilemma under random pairings. Populations initialized with low-618

concentration priors (e.g., Dirichlet (0.5, 0.5)) reliably recover cooperative behavior in populations619

of size 50. In contrast, populations initialized with more uniform priors (e.g., Dirichlet (1.0, 1.0))620
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Figure 4: Impact of Interaction Stochasticity with Policy Gradients. A population of 50 agents with tabular, pa-
rameterized strategies was initialized using a Dirichlet (0.75, 0.75) distribution. We compare the performance of fixed
pairings, where opponents remain fixed, with random pairings, where opponents are randomized each round. This
figure illustrates that, even with the additional noise introduced by approximate policy gradient updates, random
pairings can reverse defective outcomes. Despite the stochastic nature of strategy updates, population dynamics ef-
fectively guide agents toward cooperative equilibria.
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frequently fail to sustain cooperation. We focus here on the random pairings setting, as the fixed621

pairings condition typically leads to rapid defection regardless of initialization, offering limited622

insight. This highlights the critical role of initial behavioral diversity in stabilizing outcomes, even623

under abstract function approximators like NNs.624

This heightened sensitivity in neural networks (NNs) arises from the structural complexity of625

their parameter space. Unlike tabular strategies, which directly specify action probabilities, NNs626

encode these behaviors indirectly through a non-linear and high-dimensional weight vector θ.627

This added abstraction introduces a disconnect between the parameters being optimized and the628

resulting behavioral strategies, complicating the learning dynamics.629

To formalize and visualize the disconnect between parameter updates and strategic behavior,630

the following distance metrics are defined:631

• NN parameter distance: the normalized L2 distance between the weight vectors θ of two632

neural network strategies.633

• Strategy (tabular) parameter distance: the normalized L2 distance between the action prob-634

ability distributions defined by two strategies.635

• Behavioral distance:636

Dbehavior (πi, πk) =
∣∣Vavg (πi, P)− Vavg (πk, P)

∣∣ , (12)

where Vavg denotes the average performance of a strategy π against a fixed population P637

(see Section 4).638

Since neural networks ultimately define tabular policies through their outputs, both the dis-639

tance between internal weight vectors (NN parameter distance) and the distance between result-640

ing action distributions (strategy parameter distance) can be measured. This dual representation641

enables analysis of how differences in NN parameters translate into behavioral differences.642

To investigate this relationship, 2,000 strategies were sampled randomly and the above dis-643

tance metrics were computed for further analysis. ??a shows the relationship between NN pa-644

rameter distance and the corresponding strategy parameter distance, while ??b compares strategy645

parameter distance with behavioral distance across both representations.646

??a reveals a weak correlation between NN parameter distance and the corresponding tabular647

policy distance, highlighting the entangled nature of NN parameters. ??b further shows that648

tabular strategies maintain a stronger correlation between parameter and behavioral distances,649

whereas NN strategies exhibit little to no such alignment. This indicates that even minor changes650

in NN weights can result in large and unpredictable shifts in behavior.651

This instability presents a key challenge for preserving behavioral diversity during learning.652

In NN-based systems, even a single training iteration can be sufficient to eliminate initial vari-653

ation. The challenge is amplified by the overparameterized and non-linear structure of the NN654

architecture. However, initializing neural strategies with low-concentration Dirichlet priors (e.g.,655

Dirichlet(0.5, 0.5)) promotes greater dispersion in parameter space, increasing the chance that656

agents converge to distinct local optima. Although the behavioral space is not directly controlled,657

this increased parameter-space variability can indirectly support a broader range of behaviors,658

helping to sustain diversity that would otherwise collapse early in training.659
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Figure 5: Parameterizing strategies with Neural Networks: A population of 50 agents is parameterized with neu-
ral network strategies using both Dirichlet (0.5, 0.5) and Dirichlet (1.0, 1.0). Exact gradients were used to update
strategies. Cooperation is consistently achieved with a Dirichlet (0.5, 0.5) initialization, while it is unlikely with a
Dirichlet (1.0, 1.0) initialization. Neural networks introduce complexities to the learning process, but these results
indicate that cooperation remains attainable when parameters are appropriately tuned.

This sensitivity can be mitigated however, by using natural gradients. In continuous time, the660

natural gradient flow [33] uses the update dπ
dt = ∇π J (π), which corresponds to the learning dy-661

namics used in the tabular setting. On the other hand, the naı̈ve gradient flow is dθ
dt = ∇θ J

(
πθ

)
.662

Since dπ
dt = dπ

dθ
dθ
dt and ∇θ J

(
πθ

)
=

(
dπ
dθ

)⊺
∇π J (π), the natural gradient gives the equation663

dθ

dt
=

((
dπ

dθ

)⊺ dπ

dθ

)−1

∇θ J
(

πθ
)

. (13)

These learning dynamics account for the curvature of the parameterization via pulling back the664

metric tensor on the underlying Euclidean space.665

5.5 Efficient optimization666

Random pairings have been shown to mitigate defection, even under exact and approximate self-667

ish gradient updates. While these results have been validated in relatively simple Markov games,668

a natural question arises as to whether such findings scale to more complex, high-dimensional669

environments. To address this challenge, Latent Reinforcement Learning (LRL) is proposed, a novel670

framework enabling strategy optimization within a learned, low-dimensional latent embedding671

space.672

Latent optimization techniques have been extensively applied in domains such as computer673

vision and natural language processing to facilitate more efficient learning by focusing on se-674

mantically meaningful, compressed representations. However, their application to multi-agent675

reinforcement learning, and specifically to strategy optimization in game-theoretic settings, is a676

significant advancement. The inherent non-stationarity and strategic interdependence of multi-677
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Figure 6: Latent Reinforcement Learning (LRL). LRL comprises two phases: (1) pre-training an autoencoder to learn
compact strategy representations, using either parameter reconstruction or behavioral similarity, and (2) optimizing
latent strategy embeddings directly. The encoder is discarded after initialization, while a frozen decoder maps latent
embeddings back into full strategies deployed in the environment. Payoff gradients from interactions are backpropa-
gated through the decoder, enabling stable and efficient optimization within the latent space.

agent environments make direct parameter optimization noisy and sample-inefficient. LRL pro-678

vides a promising approach by leveraging a structured latent space.679

LRL operates in two stages. First, an autoencoder is trained to learn a compact and infor-680

mative representation of tabular strategies by minimizing reconstruction error. This yields an681

encoder E that maps strategies into a continuous latent space Rd. Latent strategies are initialized682

by sampling from a Dirichlet distribution and encoding these samples:683

z0 ∼ E (Dirichlet (α)) , z0 ∈ Rd, (14)

where z0 denotes the initial latent embedding of the strategy. During the second stage, optimiza-684

tion proceeds directly in the latent space using gradient ascent updates:685

zt+1 = zt + η∇zt J (zt) , (15)

where J (zt) represents the objective function evaluated on the decoded strategy corresponding686

to zt. The decoder remains frozen during optimization, ensuring updates remain within the687

manifold of plausible strategies. An overview of the framework is illustrated in Figure 6.688

A novel and compelling advantage emerges from integrating LRL with the BSAE, a com-689

bination not previously investigated. This integration combines the benefits of compact latent690

space optimization with the unique ability to optimize directly in behavior space, resulting in691

exceptional training efficiency. Beyond its immediate applications, this dual optimization frame-692

work has the potential to transform a wide range of RL problems. Existing approaches focus on693

parameter-space optimization, despite the fact that what truly matters is the resulting behavior.694

Since indirect optimization of behavior via parameters is often inefficient, this approach could695

open new pathways to faster, more interpretable, and more effective learning.696

Results shown in Figure 7 demonstrate that latent optimization substantially improves sample697

efficiency, using the same parameters and x-axis scale as Figure 3 for a fair comparison. The au-698

toencoder effectively filters out high-frequency strategy details; for example, strategies differing699

only in cooperation probability by small fractions such as 0.99 versus 0.9999 are nearly indistin-700

guishable in latent space. By abstracting away such fine-grained details, LRL guides learning701

toward behaviorally meaningful changes, reducing noise in gradient estimates and accelerating702

convergence.703
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The latent space functions as a form of structural regularization, much like how population704

learning distributes learning pressure across diverse interactions. In LRL, this regularization705

arises from dimensionality reduction, which restricts updates to a subspace capturing only the706

most salient strategic features. Beyond improving sample efficiency, LRL provides a principled707

mechanism for retaining the expressive capacity of neural networks while mitigating the adverse708

effects of parameter sensitivity highlighted earlier. In high-dimensional NN weight spaces, small709

perturbations can trigger abrupt, often erratic behavioral shifts, posing significant challenges710

in non-stationary, multi-agent environments characterized by sharp local discontinuities. In con-711

trast, latent optimization constrains learning to a smoother, low-dimensional manifold that filters712

out noisy or redundant weight-level variation. This yields more behaviorally coherent updates713

and stabilizes training dynamics.714

6 Ablations and visualizations715

6.1 Population size716

To understand how population structure influences the emergence of cooperation, an ablation717

study was conducted varying the population size from 2 to 50 in increments of 2. For each718

population size, agent strategies were initialized by sampling from a Dirichlet distribution with719

a concentration parameter of 0.75. This distribution ensures a moderate level of initial diversity,720

preventing the population from starting in either highly uniform or overly chaotic configurations.721

Each simulation was run until convergence, and results were averaged over 25 independent trials.722

The average population reward is reported in Figure 8.723

The results reveal that while small populations typically converge to defect-dominated out-724

comes, populations as small as 10 begin to exhibit consistent convergence toward cooperative725

equilibria. This trend becomes more robust as population size increases, with larger populations726

reliably achieving high final rewards. Interestingly, the timescale of convergence remains largely727

unaffected by population size. That is, while larger populations are more likely to discover coop-728

erative strategies, they do not require more time to do so. These results have significant practical729

implications suggesting that random interactions within a modestly sized and diverse group are730

sufficient to reverse defection; unrealistically large populations are not required.731

6.2 Diversity732

There are two primary levers for increasing strategy coverage in a population: expanding popu-733

lation size and modifying the diversity of initial strategy distributions. While larger populations734

naturally span a broader region of the strategy space, a more direct and controllable method is735

to adjust the Dirichlet concentration parameter used for initialization. In the previous section,736

the effect of population size on cooperative convergence was explored. Here, the focus shifts to737

how varying the Dirichlet concentration influences learning outcomes. To this end, a population738

of 50 agents was initialized using concentration values in {0.25, 0.5, 0.75, 1.0, 1.25}, and learning739

trajectories were examined across repeated trials and multiple games until convergence.740

As shown in Figure 9, cooperative outcomes emerge reliably across a wide range of concen-741

tration values. Interestingly, the most diverse setting (concentration = 0.25) produces the worst742

performance, with final rewards significantly lower than in less diverse settings.743
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Figure 7: Impact of Latent Optimization on Sample Efficiency. Using the same parameters as in Figure 3, opti-
mization is performed in the reduced latent space to enable a fair comparison. Latent optimization greatly enhances
sample efficiency, with random pairings leading to rapid convergence toward cooperative outcomes, while fixed pair-
ings remain prone to defection.
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Figure 8: Influence of Population Size on Convergence Rewards: We investigate the impact of varying population
sizes on the dynamics of cooperation. Each player in the population was initialized with strategies drawn from a
Dirichlet (0.75, 0.75) distribution, and the population learning framework was run for up to 500,000 interactions or
until convergence. Exact gradients were used to update strategies. The results show that larger populations support
more robust convergence to cooperative equilibria.
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To understand why excessive diversity can hinder learning in the IPD, consider how πi would744

update their strategy under each of the following conditions:745

1. πi ≈ 0, πj ≈ 0 (Mutual Cooperation):746

Mutual cooperation is stable and beneficial, leaving no incentive to change; gradients are747

near zero.748

2. πi ≈ 0, πj ≈ 1 (Sucker’s Payoff):749

The cooperator receives the lowest possible payoff (S = 0), but the gradient is also near750

zero, providing no learning signal.751

3. πi ≈ 1, πj ≈ 0 (Temptation):752

The defector is highly rewarded and thus sees no reason to change, reinforcing selfish753

behavior.754

4. πi ≈ 1, πj ≈ 1 (Mutual Defection):755

Although suboptimal, mutual defection is stable and offers no gradient incentive to coop-756

erate.757

In each of these cases, gradients either reinforce the same behavior or vanish. High initial di-758

versity increases the likelihood that many agent pairs begin in one of these unproductive regions759

of the strategy space. As a result, learning either stalls or exhibits unstable, oscillatory behavior.760

This limitation is directly tied to the reward structure of the IPD, particularly the zero-valued761

sucker’s payoff, which fails to provide a gradient for improvement in crucial scenarios. If the762

payoff matrix were altered (e.g., S > 0), these effects might be mitigated.763

Another observation from Figure 9 is that as the Dirichlet concentration parameter increases,764

reducing diversity, so too does the slope in the optimization trajectory. This indicates that with765

higher initial concentrations, strategy behavior changes more readily. This pattern is consistent766

with the nature of the initialized strategies: lower concentrations generate more extreme “confi-767

dent” agents (near 0 or 1) that are difficult to shift through learning. In contrast, higher concentra-768

tions produce more moderate “undecided” agents with strategies closer to the midpoint. These769

undecided agents are more sensitive to learning signals and require fewer reinforcing updates to770

shift toward a confident strategy, resulting in faster adaptation and a steeper optimization slope.771

While diversity is generally beneficial, its effectiveness is highly dependent on the structure772

of the environment. In poorly defined or weakly informative environments, such as those where773

certain payoffs fail to produce meaningful learning signals, excessive initial diversity can lead774

agents into unproductive regions of the strategy space. This, in turn, can hinder effective learning775

and destabilize collective dynamics, ultimately impeding convergence toward optimal outcomes.776

6.3 Visualization777

To gain deeper insight into how population dynamics naturally foster cooperation in social dilem-778

mas, the IPD is simulated over 100,000 iterations with a population of 50 agents. Agent strategies779

are recorded every 100 epochs for subsequent analysis. In the IPD, memory-one strategies are780

represented as five-dimensional vectors (p0, pCC, pCD, pDC, pDD), where each component corre-781

sponds to the probability of cooperating given the outcome of the previous round. To facilitate782

interpretation, these high-dimensional vectors are projected into a two-dimensional space.783
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Figure 9: Effect of Initial Population Diversity on Equilibrium Rewards: We initialize a population of 50 agents
with tabular, parameterized strategies, updating them using exact gradients. This figure demonstrates how the initial
diversity of the population, controlled through the concentration parameters of the Dirichlet distribution, influences
convergence rewards. Initial population diversity can have a big impact on the optimization trajectory.
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While standard dimensionality reduction techniques such as Principal Component Analysis784

(PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) are commonly used for such785

tasks, they have notable limitations in this context. These methods typically rely on fixed, pre-786

defined bases derived from the data distribution at a single point in time, such as the initial787

population. However, as strategies adapt and evolve, these projections may lose interpretability.788

Furthermore, these methods operate in parameter space and are agnostic to how strategies be-789

have in practice; they do not capture how differences in parameters translate into differences in790

outcomes.791

To address these challenges, the behavior space autoencoder, introduced in previous sections,792

is used to project policies into a behaviorally meaningful two-dimensional space. Recall that793

this model is trained using pairs of strategies sampled from a Dirichlet (0.5, 0.5) distribution,794

ensuring diverse and representative coverage of the strategy space. Each strategy is encoded795

into a low-dimensional latent vector, and the decoder predicts the expected payoffs when the796

two strategies interact in the IPD. The model is optimized to minimize the discrepancy between797

these predicted rewards and the true game-theoretic payoffs. This training objective ensures798

that the latent space reflects behavioral equivalence: strategies that perform similarly, regardless799

of their parameterization, are embedded near each other. Crucially, these embeddings remain800

meaningful under any distribution of population strategies.801

This approach constitutes a novel contribution to the analysis of evolving strategic behavior.802

By grounding the projection space in observed behavioral consequences rather than structural803

similarity, the behavior space autoencoder provides a consistent and interpretable framework for804

understanding complex dynamics in policy evolution. Unlike static techniques, it retains inter-805

pretability across time, even as the population distribution shifts dramatically. Beyond the spe-806

cific context of the IPD, this methodology offers a general and flexible tool for interpretability in807

dynamic multi-agent systems. The same principles can be applied to a wide variety of domains,808

including reinforcement learning, evolutionary games, policy space exploration, and real-world809

multi-agent coordination problems. By providing a way to visualize and analyze agent behavior,810

the behavior space autoencoder opens new pathways for understanding and guiding emergent811

behavior in complex adaptive systems.812

The trained encoder is leveraged to visualize the evolving landscape of strategies through-813

out the simulation. A complete visualization of the full evolutionary trajectory is provided in814

the supplementary material, while a selection of representative snapshots is presented in ??. In815

these figures, each agent’s strategy is depicted as a blue point embedded in the learned two-816

dimensional behavior space. To provide behavioral context and aid interpretation, canonical817

reference strategies, such as Tit-for-Tat (TFT), Always Cooperate (ALLC), Always Defect (ALLD),818

and Generous Tit-for-Tat (GTFT), are also plotted. These strategies serve as well-known behav-819

ioral archetypes: TFT initiates with cooperation and then reciprocates the opponent’s previous820

action, promoting mutual cooperation; ALLC cooperates unconditionally, leaving it vulnerable821

to exploitation; ALLD defects unconditionally, representing a purely selfish approach; and GTFT822

modifies TFT by occasionally forgiving defections, thus helping sustain cooperation even in noisy823

or error-prone environments.824

The visualization reveals that the initial population is highly diverse, exploring a broad region825

of the strategy space. However, within the first few hundred epochs, the population dynamics826

lead the distribution to drift toward ALLD and cluster within a region characterized by extor-827

tionate strategies. These extortionate strategies consistently punish defectors but also defect with828
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some probability against cooperators, exploiting them for gain. Crucially, these strategies exhibit829

negative reinforcement: when two extortionate strategies interact, the selfish-learning gradients830

push both toward increasingly defecting behaviors, ultimately converging on ALLD. A similar831

pattern emerges when extortionate strategies are paired with TFT; despite TFT’s reciprocity, both832

agents tend to evolve toward defection in response to exploitation.833

Escaping these defectionary feedback loops requires sufficient population diversity. In partic-834

ular, forgiving strategies, characterized by high probabilities of cooperating following an oppo-835

nent’s defection (high pCD), play a pivotal role in redirecting the learning dynamics of extortion-836

ate strategies toward more cooperative outcomes. While these forgiving strategies are vulnerable837

to exploitation in the short term, they are rewarded over a longer horizon as they serve to shift838

the population toward cooperative dynamics. Importantly, with enough diversity, these forgiving839

strategies naturally emerge through random interactions.840

When player pairings are fixed, agents learn exclusively from repeated interactions with the841

same partner, limiting their exposure to diverse behaviors. If both agents fall into a mutual de-842

fection pattern, there are no external influences to break the cycle, making full defection (ALLD)843

a likely outcome. While cooperation is not impossible under these conditions, it tends to be rare844

and fragile. In contrast, when agents are randomly paired across the population, they are contin-845

ually exposed to new behaviors. This variety introduces opportunities to escape local defection846

traps and promotes the discovery and reinforcement of cooperative strategies.847

This study reveals that forgiving strategies, those that offer opportunities for recovery af-848

ter defection, can fundamentally reshape learning dynamics in multi-agent systems. In MARL849

settings, such strategies provide a stabilizing force that prevents convergence to degenerate out-850

comes. In systems with many agents, such as swarm robotics, decentralized energy grids, or851

financial trading platforms, missteps and exploitation are inevitable. Forgiving strategies allow852

agents to absorb occasional adversarial behavior without collapsing into permanent mistrust or853

retaliation. This creates space for cooperation to recover and persist. From a systems design854

perspective, incorporating mechanisms that promote or incentivize forgiveness, such as reward855

shaping, memory-based policies, or structured exploration, can help unlock more resilient co-856

operative equilibria. This insight also bridges to broader societal systems, where forgiveness857

underlies everything from diplomatic treaties to community conflict resolution, reinforcing its858

importance as a universal lever for long-term coordination.859

7 Discussion860

The central finding is that randomized interactions among selfish agents reverse defectionary out-861

comes, a result that contradicts prior literature, which points to the fact that stochastic pairings862

invariably degrade cooperation. In a diverse set of simple Markov games designed to capture863

a wide range of realistic social dilemmas, agents matched with randomly drawn opponents not864

only learn to cooperate but also reliably converge to the optimal strategy. Rather than serving865

as a barrier, population-level stochasticity produces forgiving strategies that act as attractors in866

the strategic landscape, drawing defectors back into cooperative clusters and guiding the entire867

population toward mutually beneficial, optimal outcomes, achieved without any engineered in-868

terventions such as reward shaping, partner selection, or centralized coordination. Randomized869

interactions serve as a natural mechanism for robust optimization, enabling selfish agents to870

develop strategies that perform reliably in the context of conflicting goals.871
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Figure 10: Evolving Strategy Landscape. A sequence of snapshots illustrates the trajectory of agent embeddings
over training time. Initially, the population is highly diverse, exploring a wide range of strategies. By epoch 20,000,
extortionist strategies dominate, leading to lower overall payoffs. However, diversity persists, and the presence of
forgiving strategies creates gradients that shift the population toward cooperation. By epoch 100,000, most agents
have moved away from ALLD, converging toward more forgiving, prosocial behaviors. This evolution underscores
the role of transient interactions in shaping long-term dynamics and highlights how self-interested learning can lead
to cooperative outcomes.

The behavior space autoencoder is a truly novel advance in strategy representation. Unlike872

conventional dimensionality-reduction methods, such as principal component analysis, that rely873

on a fixed basis and can quickly become obsolete as strategy distributions evolve, the BSAE874

learns latent embeddings directly from empirical payoff data. This behavior-centric approach875

ensures that the representation remains meaningful even as new strategies emerge, clustering876

them by functional payoff outcomes rather than superficial parameter similarities. As a result, the877

BSAE not only makes it possible to visualize the strategic landscape but also provides a robust878

foundation for subsequent optimization techniques that exploit these learned latent spaces to879

accelerate convergence and improve sample efficiency.880

Latent optimization techniques have become widespread in machine learning, yet their ap-881

plication to game-theoretic multi-agent reinforcement learning remains novel. This work shows882

that even optimizing simple parameter-space embeddings with Latent Reinforcement Learning883

(LRL) yields strong gains in sample efficiency. However, when combined with the behavior space884

autoencoder (BSAE), the benefits are amplified: first uncovering the geometry of strategy space885

and then performing optimization directly within that manifold, this integrated framework shifts886

multi-agent reinforcement learning away from blind parameter search toward behavior-aligned887

learning, dramatically increasing sample efficiency.888

Beyond overturning longstanding assumptions in multi-agent reinforcement learning, these889

findings reveal a broader design principle for decentralized, heterogeneous systems: random-890

ness, when combined with behavior-aware learning, can cultivate resilient cooperation. This891

insight carries significant implications for robotics and autonomous systems. Multi-robot teams892

and autonomous vehicle fleets frequently depend on carefully engineered coordination proto-893

31



cols that often falter when faced with real-world variability. Introducing randomized encoun-894

ters among agents provides a more flexible and adaptive approach, enabling systems to organ-895

ically discover robust, cooperative behaviors without explicit programming. For instance, in896

autonomous traffic systems, vehicles interacting with a diverse and unpredictable set of partners897

may naturally develop forgiving strategies that help maintain smooth flow and safety, even when898

individual agents occasionally make errors. Similarly, in distributed computing or peer-to-peer899

networks, random peer selection can promote tolerant behaviors, such as accepting intermittent900

packet loss, that sustain overall system integrity amid decentralization and noise. In these con-901

texts, randomness does not breed chaos but instead guides systems toward globally beneficial902

outcomes that rigid, pre-scripted solutions frequently fail to achieve.903

This dynamic echoes across numerous disciplines. In ecology, random disturbances prevent904

any single species from dominating resources, thereby preserving biodiversity and maintaining905

ecosystem resilience. Similarly, random interactions within agent populations break up uni-906

form defection, enabling cooperative strategies to persist, propagate, and ultimately prevail. In907

economics, decentralized markets often depend on random buyer-seller pairings, where trust908

is cultivated not through heavy regulation but through repeated, diverse interactions, fostering909

forgiving norms such as leniency following minor defaults. Sociology reveals comparable pat-910

terns, where cooperation and forgiveness arise organically from informal, stochastic exchanges,911

like gossip, reputation building, and interpersonal negotiation, rather than from top-down man-912

dates. Political science further reinforces this insight: truth and reconciliation processes deliber-913

ately introduce unpredictable pairings to disrupt cycles of conflict and rebuild social cohesion.914

Across these varied fields, randomness acts as a catalyst for flexibility, diversity, and the emer-915

gence of stable cooperative norms. These same principles hold true in artificial systems, where916

forgiving strategies spontaneously emerge through diverse encounters, serving as powerful sta-917

bilizers within complex, decentralized environments. Despite these promising insights, several918

important limitations should be acknowledged. The results are derived from relatively simple919

stochastic environments, games defined by memory-one strategies and clear payoff structures.920

While such settings effectively isolate core social dilemmas, they abstract away many complexi-921

ties inherent to real-world multi-agent systems. Domains with continuous action spaces, partial922

observability, asynchronous decision-making, or large, heterogeneous populations present open923

challenges not addressed in this work. Scalability, in particular, remains a central concern, as the924

computational burden of modeling and optimizing over increasingly rich strategy spaces grows925

rapidly. Nonetheless, the integration of the behavior space autoencoder (BSAE) with Latent Re-926

inforcement Learning (LRL) offers a potential path forward. By enabling direct optimization927

within a compressed, behaviorally meaningful latent space, this framework can dramatically re-928

duce sample complexity and improve learning efficiency, making it a promising foundation for929

scaling cooperation dynamics to more complex and realistic environments.930

Several promising avenues for future research arise from this work. One key direction is to ex-931

plore how forgiving strategies can be systematically introduced into existing populations to shift932

their dynamics toward more cooperative and socially beneficial outcomes. Understanding how933

to guide populations toward forgiveness could have broad implications for designing resilient934

multi-agent systems in economics, robotics, and distributed computing. Another important area935

is investigating the impact of different social network structures on cooperation dynamics. Since936

real-world interactions are rarely fully random, studying how network topology influences the937

emergence and stability of cooperative behaviors can inform the design of more effective decen-938
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tralized systems and social platforms. Finally, a particularly timely direction is examining how939

populations of self-interested large language models (LLMs) behave when faced with conflicts940

of interest. Understanding whether and how population-level dynamics encourage cooperation941

among LLMs is crucial as these models are increasingly deployed in settings requiring negotia-942

tion, collaboration, or conflict resolution. Insights here could help ensure that AI systems align943

better with human values and collective goals.944

Code availability945

Implementation details may be found at https://github.com/smerrillunc/population learning.946
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