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Abstract

We investigate how Large Language Model
Agents (LLM Agents) can acquire new skills
from a set of primitive actions that help to solve
tasks in a specific environment. We present four
changes to LearnAct (Zhao et al., 2024). Our
changes mostly target the tool creation process.
We evaluate our modifications on the Gripper
environment and compare them to LearnAct.
To investigate the effect of each proposed mod-
ification we perform an ablation study.

1 Motivation

In a blogpost (Weng) Lilian Weng summarized
LLM powered agents as: an LLM + memory +
planning skills + tool use. There has been a recent
explosion in the research and development of LLM
powered agents which might be a function of their
success and open-source resources. HuggingGPT
(Shen et al., 2024) augmented the action space of
LLM agents to be able to call and utilize the vast
set AI models on HuggingFace. Our work is mo-
tivated by the idea of expanding the action space
by combining different tools. A new tool, “zoom”
for example can be seen as a composition of the
primitive’s ‘crop ‘and ‘re-size’. Furthermore, we
hope our work provides insights into how to de-
sign an LLM agents capable of combining multiple
HuggingFace models to improve their performance
and novelty.

2 Problem Definition

Reinforcement learning (RL) have shown impres-
sive ability to solve Markov Decision Processes
(MDPs) but often suffer in terms of sample effi-
ciency and long training times making them less
useful in practice. LLM-based agents leverage the
reasoning and planning abilites of pre-trained lan-
guage models to navigate these environments more
efficiently. In our setting, an LLM Agent receives
the current state of the environment, the goal state

of the environment, and a set of predefined primi-
tive actions all through text. The agent then must
compose these primitive actions into more complex
actions, allowing it to solve the task in fewer steps.
At the end of the learning stage, the LLM Agent
has expanded its action space with functions that
help solve problems.

3 Dataset

The dataset contains 20 problems described in the
Planning Domain Definition Language (PDDL) for
the Gripper environment (Ma et al., 2024). The
gripper environment consists of two rooms, six
balls, and a robot with two grippers. The robot’s
goal is to move a set of balls to another room by
calling three functions: move, pickup, and drop.
Each problem is represented by an initial and goal
state that defines the position of the balls and robot
and whether the grippers are free. Three problems
are used for training, and 17 problems are used for
testing. Input consists of the start and goal state and
the primitive actions the robot can perform. The
output is a set of learned functions that compose
several primitive actions. These high-level actions
are specified in Python code and natural language
within a docstring. An example of an Input and
Output is given in Figure 1.

4 Method

Our method, shown in Figure 2, builds off the pre-
vious work done by LearnAct (Zhao et al., 2024).
We borrow their 3-phase pipeline of prompting an
LLM to generate tools, using those tools in the en-
vironment, and improving the tool based on their
performance. We explain the create tools module
in detail as this is where all our modifications to
LearnAct come from. As we made only marginal
modifications to the remaining modules, we only
briefly describe them and instead refer the inter-
ested reader to LearnAct (Zhao et al., 2024).



Actions: move(roomA, roomB), pickup(obj, room, gripper), 
drop(obj, room, gripper)
Initial State: Ball 1, 2, 3, 5 are in Room A, Ball 4, 6 are in 
Room B, Robot is in Room A, Right & Left Gripper are free
Goal State: Ball 4, 6 are in Room A
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def move_objects(room1, room2, objects, gripper):
    for obj objects:
        pickup(obj, room1, gripper)
        move(room1, room2)
        drop(obj, room2, gripper)
        move(room2, room1)

Description: This actions moves all objects from one 
room to another using a gripper.
Input: room1 (string), room2 (string), objects (list): list of 
objects to move from room1 to room2, gripper (string) 
Required World State: all objects must be in room1, 
the robot must be in room1, gripper must be free
Resulting World State: all objects are now in room2, 
the robot is in room1

Output

Input

Figure 1: Example of an Input and Output

4.1 Create Tools Module

We create novel tools for our agent to use in a
three-step prompting scheme utilizing two mod-
els: GPT-3.5-turbo16k (OpenAI) and codeBooga
(Hugging Face, c). CodeBooga is a 32-billion pa-
rameter LLM fine-tuned on Python code. We first
prompt GPT-3.5 to think of how the primitive ac-
tions can be combined to solve any arbitrary task.
Specifically, we ask the model to write function
descriptions for composite functions. We request
that these function descriptions be complete with
required inputs, input types, the necessary precon-
ditions to use a function, and how the function
changes the state of the environment. We then
prompt codeBooga to write Python code based on
these function descriptions. Finally, we ask GPT-
3.5 if the previously generated code contains any
errors and to correct any errors found. The code
critique runs in a loop until the produced code has
no changes or the LLM responds that the code is
correct.

Our Create Tools module differentiates itself
from LearnAct in four key ways. First, LearnAct
prompts an LLM to think of useful functions and
write Python code in a single query. We speculate
asking an LLM to plan and generate code in the
same step adds unnecessary difficulty to the prob-
lem. We decompose the problem into a reasoning
and coding step to simplify it. In the reasoning
step, an LLM must think of what functions would
be useful, understand when they can be used, and
how they affect the state of the environment. Sec-

ond, our model differs from LearnAct in that it
differentiates between reasoning and coding tasks.
In all coding tasks, we query codeBooga, while
LearnAct uses the same base LLM for all queries.
Third, the code critic module is a novel addition
to the original LearnAct model. Fourth, we made
all the prompts much more directed and concise.
The cumulative effect of these changes serves the
code generation quality and prevents hallucinations.
Each of our modifications is based on a hypothesis
and two observations we made:

Hypothesis: Shorter, more directed prompts
may be easier to understand. When learning tasks
sequentially, Neural Networks have shown a be-
havior of "catastrophically forgetting" whereby
earlier information is forgotten (French, 1999).
While GPT-3.5 has a 16k context window, lengthy
prompts may result in similar forgetting or oth-
erwise serve to confuse an LLM. Furthermore,
prompts asking an LLM to solve multiple sub-
problems may be fundamentally more difficult to
answer.

Observation 1: LLM models fine-tuned on
Python code are better at solving coding tasks,
while GPT-3.5 is better at reasoning tasks. Hug-
gingFace has several leaderboards that rank the
coding ability of LLMs based on a set of unique
questions. The leaderboards empirically show sub-
stantial differences between different models (Hug-
ging Face, a).

Observation 2: Critique methods are a new
and powerful approach in many LLM prompting
schemes that have been shown to prevent halluci-
nations and improve code generation ability (Gou
et al., 2023). We validate the effect of the changes
proposed by our hypotheses and observations in
our ablation study.

4.2 Solve Problems Module

In this module, a "user agent" is equipped with our
generated tools and their corresponding descrip-
tions. As is typically done in action prompting, we
tell GPT-3.5 it operates in an action-observation-
loop where it selects an action, and the environment
will return an observation. We further inform the
agent of its action space, initial observation, and
the desired goal state. Most importantly, we pro-
vide a few shot examples of the action observation
loop. We iteratively prompt the LLM to select an
action until the problem is solved or a maximum
number of time steps is achieved.
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Figure 2: Overview of Modified LearnAct

4.3 Optimize Tools

After testing the newly generated tools in the en-
vironment, we obtained a record of useful infor-
mation to further modify the tools we generated in
3.1. Specifically, we identify and trace each tool
that was used and failed to determine the cause of
failure, such as an invalid action, code that failed
to compile, or incorrect function use. Based on this
feedback, we prompt an LLM with this trace to
either update the existing code to fix errors or add
more detailed usage notes to prevent future misuse
of that tool.

5 Experiments and Results

With our dataset size of 20, we reserved three prob-
lems (defined by a tuple of initial and goal state) for
training and optimizing our toolset and 17 for test-
ing. This is consistent with LearnAct (Zhao et al.,
2024). Since we only had access to GPT-3.5 (Ope-
nAI) we use this model for our reasoning module.
We set the temperature to 0.5 and top_p=1.0. These
metrics set the amount of determinism in the model.
For our coding module, we used codeBooga-latest
(Hugging Face, c), which scored highest on a col-
lection of HuggingFace problems (Hugging Face,
b). When using this model, we utilized the recom-
mended settings with a temperature of 1.31, top_p
of 0.14, top_k of 49, and a repetition penalty of
1.17. We ran our experiments three times and re-
ported an average over all trials. Our results are
reported in Table 1.

Task success rate measures the number of prob-
lems the agent solved within 20 time steps. A
problem is solved if all objects are at the desired
goal location. Average step accuracy refers to the

number of valid actions an agent takes. An in-
valid action is one where an agent responds with an
action that can’t be executed by the environment.
For example, an agent may try to pick up a ball
that’s in a different room. The average number of
steps refers to the number of tool calls required to
complete the task. Finally, we report the average
number of tokens sent to GPT-3.5.

Table 1 shows the results of our Modified Lear-
nAct against two baselines: the original LearnAct
and Voyager (Wang et al., 2023) on the Gripper
(Ma et al., 2024) environment. Our modifications
resulted in a considerable increase in task success
rate to 85%, which is even higher than the origi-
nal LearnAct with GPT-4 as the backbone model
(82.5% vs 85%). After training, the modified Lear-
nAct Agent needed less than half the number of
steps the original LearnAct agent needed, demon-
strating the effectiveness of the high-level meth-
ods our modified LearnAct Agent learned. The
fewer number of steps required to solve a task is
due to the strong increase in average step accu-
racy from LearnAct (27.7%) to modified LearnAct
(71.8%). Overall, the results demonstrate that our
modifications increased LearnAct’s overall perfor-
mance. However, a more thorough analysis, in-
cluding more complicated environments, such as
AlfWorld (Shridhar et al., 2020) is required in the
future.

Our modifications to LearnAct also resulted
in fewer tokens. Specifically, our method used
2.029M tokens, which is slightly better than the
2.373M tokens LearnAct uses. The reduction in
tokens is largely a result of a recursive code gen-
eration module. This module iteratively prompts



Models Task Success
Rate (GPT 3.5)

Task Success
Rate (GPT 4)

Average
Step Accuracy

Average
Number of Steps

Baseline 1: LearnAct 45% 82.5% 27.7% 9.1
Baseline 2: Voyager 2% 76.5% - -
Modified LearnAct 85.0% - 71.8% 4.3

Table 1: Test Results for Modified LearnAct and the Ablation Study on the Gripper Environment

GPT up to three times to generate code until it com-
piles successfully. Simplifying the code generation
into two tasks allows valid code to be generated
on the first pass nearly every time. Thus, breaking
down the coding problem into two subproblems sur-
prisingly reduced the total number of tokens used.
Given that LLMs are priced on the basis of tokens,
this improvement in token usage implies that our
modifications are cheaper and more practical.

To better understand how our modifications af-
fected the LLM agent’s performance we individ-
ually tested our proposed changes on a LearnAct
agent.

5.1 Ablation 1: Modified LearnAct with one
step tool creation

The original LearnAct model does not decompose
the task of creating tools into subtasks of creating
tool descriptions and Python code. To isolate the ef-
fect of the decomposition of this task, we perform
an ablation study. We use the original tool gen-
eration prompt from LearnAct but leave the error
correction module and outsource code generation
to codeBooga. In each trial, the task success rate
was zero because codeBooga could not fully un-
derstand the problem and wrote code that could
not be executed in the environment. Thus, code-
Booga was unable to fully understand the task at
hand. This suggests that improving fine-tuning a
language model for codeing may compromise its
ability to process complex natural language queries.
Moreover, this highlights the fact that when using
language models fine-tuned on a task, one needs to
simplify the instructions and make queries as clear
as possible. Our complete model provides simple
queries to codeBooga by only asking it to write
code based on the docstrings.

5.2 Ablation 2: Modified LearnAct without
codeBooga

In our modified LearnAct we used codeBooga
(Hugging Face, c), an LLM fine-tuned on Python
code, for the coding of the high-level function that

composes the primitive actions. We performed
an ablation study, in which we analyzed the perfor-
mance of or modified LearnAct without using Code
Llama for the coding but GPT 3.5 instead. The re-
sults can be seen in row 5 in Table 1 (Ablation
2).

The task success rate drops from 85% to 58.8%,
which indicates the superior code generation ability
of codeBooga compared to GPT 3.5. The Python
code for the high-level functions GPT3.5 generates
is not exactly doing what the description specifies
compared to codeBooga, which can also be seen in
the increase in the average number of steps from
4.27 to 10.2. The step accuracy remains at around
72% (71.8% Modified Learnact vs 73.8% Modified
Learnact without codeBooga).

To understand the differences of the code gener-
ated between GPT-3.5 and CodeBooga we prompt
each to generate the function carry_to. We provide
the exact same prompt and docustring for the func-
tion and provide the resulting code in Figure 3 of
the appendix. The two generated codes are similar
except but the CodeBooga function provides an
extra check to ensure the robot is not in the same
room as the object when the function is called. Call-
ing move(’robot_loc’, ’robot_loc’) would trigger
an invalid action from the environment, so adding
the error handling for this edge case makes the
function more universally callable. Adding these
error handling steps affect step accuracy in this sim-
plified environment, however when solving more
challenging problems the extra logical capacity of
codebooga may be particularly valuable.

5.3 Ablation 3: LearnAct with Critique
Module

The original LearnAct recursively generates new
tools and directly tests them in the environment.
We modified this behavior by first prompting the
LLM to review its generated code and to ensure
it is composed of primitive actions. This lead to
a decrease of the average success of 11.76%, a
step accuracy of 17.55, and 27.9 average number



of steps taken out of a 30 step max. This loss
in performance is in line with our hypothesis that
longer prompts may confuse the LLM in problem
solving tasks.

6 Conclusion

We believe our model performs better for the fol-
lowing reasons. Previous work has shown that
LLMs are generally undertrained (Hoffmann et al.,
2022). By handing off code generation to a code-
focused LLM, even a smaller one, we leverage that
model’s higher concentration of code tokens dur-
ing training. The generalist model may not have
achieved this density of code tokens even if this
model were many times larger. Second, our error-
correcting module likely improves performance
by changing the probability density function the
LLM draws from. In the generation step, the LLM
has likely learned to focus on the text prompt and
draw from its code distribution. However, when
prompted to check for mistakes, its attention is fo-
cused on the pre-generated code, and it "knows"
that corrections are likely small deviations from
what’s given, thus a much smaller distribution to
draw from.

There are several exciting areas of future work.
First, our user uses action-only prompting. How-
ever, when analyzing several of our models’ failed
test cases, it seems that a lot can be resolved by
incorporating better planning. Moreover, using a
ReAct (Yao et al., 2022) loop may help the agent
navigate these environments better.
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C LLM Prompts



Figure 3: Comparison of CodeBooga and GPT3.5-turbo-16k Code Generation

Figure 4: Example of Tool Description Prompt



Figure 5: Example of Python code Prompt

Figure 6: Example of error correction prompt


