Skill-Acquisition in LLLM Agents

Isai Garcia-Baza
PID: 713296738
isaigbh@live.unc.edu

Abstract

We investigate how Large Language Model
Agents (LLM Agents) can acquire new skills
from a set of primitive actions that help to solve
tasks in a specific environment. We present four
changes to LearnAct (Zhao et al., 2024). Our
changes mostly target the tool creation process.
We evaluate our modifications on the Gripper
environment and compare them to LearnAct.
To investigate the effect of each proposed mod-
ification we perform an ablation study.

1 Motivation

In a blogpost (Weng) Lilian Weng summarized
LLM powered agents as: an LLM + memory +
planning skills + tool use. There has been a recent
explosion in the research and development of LLM
powered agents which might be a function of their
success and open-source resources. HuggingGPT
(Shen et al., 2024) augmented the action space of
LLM agents to be able to call and utilize the vast
set Al models on HuggingFace. Our work is mo-
tivated by the idea of expanding the action space
by combining different tools. A new tool, “zoom”
for example can be seen as a composition of the
primitive’s ‘crop ‘and ‘re-size’. Furthermore, we
hope our work provides insights into how to de-
sign an LLM agents capable of combining multiple
HuggingFace models to improve their performance
and novelty.

2 Problem Definition

Reinforcement learning (RL) have shown impres-
sive ability to solve Markov Decision Processes
(MDPs) but often suffer in terms of sample effi-
ciency and long training times making them less
useful in practice. LLM-based agents leverage the
reasoning and planning abilites of pre-trained lan-
guage models to navigate these environments more
efficiently. In our setting, an LLM Agent receives
the current state of the environment, the goal state

Scott Merrill
PID: 730692532
smerrill@unc.edu

Titus Spielvogel
PID: 730723353
tis@unc.edu

of the environment, and a set of predefined primi-
tive actions all through text. The agent then must
compose these primitive actions into more complex
actions, allowing it to solve the task in fewer steps.
At the end of the learning stage, the LLM Agent
has expanded its action space with functions that
help solve problems.

3 Dataset

The dataset contains 20 problems described in the
Planning Domain Definition Language (PDDL) for
the Gripper environment (Ma et al., 2024). The
gripper environment consists of two rooms, six
balls, and a robot with two grippers. The robot’s
goal is to move a set of balls to another room by
calling three functions: move, pickup, and drop.
Each problem is represented by an initial and goal
state that defines the position of the balls and robot
and whether the grippers are free. Three problems
are used for training, and 17 problems are used for
testing. Input consists of the start and goal state and
the primitive actions the robot can perform. The
output is a set of learned functions that compose
several primitive actions. These high-level actions
are specified in Python code and natural language
within a docstring. An example of an Input and
Output is given in Figure 1.

4 Method

Our method, shown in Figure 2, builds off the pre-
vious work done by LearnAct (Zhao et al., 2024).
We borrow their 3-phase pipeline of prompting an
LLM to generate tools, using those tools in the en-
vironment, and improving the tool based on their
performance. We explain the create tools module
in detail as this is where all our modifications to
LearnAct come from. As we made only marginal
modifications to the remaining modules, we only
briefly describe them and instead refer the inter-
ested reader to LearnAct (Zhao et al., 2024).

(Input B
Actions: move(roomA, roomB), pickup(obj, room, gripper),
drop(obj, room, gripper)

Initial State: Ball 1, 2, 3, 5 are in Room A, Ball 4, 6 are in
Room B, Robot is in Room A, Right & Left Gripper are free

Goal State: Ball 4, 6 are in Room A
o J

/Output 0

def move_objects(room1, room2, objects, gripper):
for obj objects:
pickup(obj, room1, gripper)
move(room1, room2)
drop(obj, room2, gripper)
move(room2, room1)

Description: This actions moves all objects from one
room to another using a gripper.

Input: room1 (string), room2 (string), objects (list): list of
objects to move from room1 to room2, gripper (string)
Required World State: all objects must be in room1,
the robot must be in room1, gripper must be free
Resulting World State: all objects are now in room2,

kthe robot is in room1 j

Figure 1: Example of an Input and Output

4.1 Create Tools Module

We create novel tools for our agent to use in a
three-step prompting scheme utilizing two mod-
els: GPT-3.5-turbo16k (OpenAl) and codeBooga
(Hugging Face, c¢). CodeBooga is a 32-billion pa-
rameter LLM fine-tuned on Python code. We first
prompt GPT-3.5 to think of how the primitive ac-
tions can be combined to solve any arbitrary task.
Specifically, we ask the model to write function
descriptions for composite functions. We request
that these function descriptions be complete with
required inputs, input types, the necessary precon-
ditions to use a function, and how the function
changes the state of the environment. We then
prompt codeBooga to write Python code based on
these function descriptions. Finally, we ask GPT-
3.5 if the previously generated code contains any
errors and to correct any errors found. The code
critique runs in a loop until the produced code has
no changes or the LLM responds that the code is
correct.

Our Create Tools module differentiates itself
from LearnAct in four key ways. First, LearnAct
prompts an LL.M to think of useful functions and
write Python code in a single query. We speculate
asking an LLM to plan and generate code in the
same step adds unnecessary difficulty to the prob-
lem. We decompose the problem into a reasoning
and coding step to simplify it. In the reasoning
step, an LLM must think of what functions would
be useful, understand when they can be used, and
how they affect the state of the environment. Sec-

ond, our model differs from LearnAct in that it
differentiates between reasoning and coding tasks.
In all coding tasks, we query codeBooga, while
LearnAct uses the same base LLLM for all queries.
Third, the code critic module is a novel addition
to the original LearnAct model. Fourth, we made
all the prompts much more directed and concise.
The cumulative effect of these changes serves the
code generation quality and prevents hallucinations.
Each of our modifications is based on a hypothesis
and two observations we made:

Hypothesis: Shorter, more directed prompts
may be easier to understand. When learning tasks
sequentially, Neural Networks have shown a be-
havior of "catastrophically forgetting" whereby
earlier information is forgotten (French, 1999).
While GPT-3.5 has a 16k context window, lengthy
prompts may result in similar forgetting or oth-
erwise serve to confuse an LLM. Furthermore,
prompts asking an LLM to solve multiple sub-
problems may be fundamentally more difficult to
answer.

Observation 1: LLM models fine-tuned on
Python code are better at solving coding tasks,
while GPT-3.5 is better at reasoning tasks. Hug-
gingFace has several leaderboards that rank the
coding ability of LLMs based on a set of unique
questions. The leaderboards empirically show sub-
stantial differences between different models (Hug-
ging Face, a).

Observation 2: Critique methods are a new
and powerful approach in many LLM prompting
schemes that have been shown to prevent halluci-
nations and improve code generation ability (Gou
et al., 2023). We validate the effect of the changes
proposed by our hypotheses and observations in
our ablation study.

4.2 Solve Problems Module

In this module, a "user agent" is equipped with our
generated tools and their corresponding descrip-
tions. As is typically done in action prompting, we
tell GPT-3.5 it operates in an action-observation-
loop where it selects an action, and the environment
will return an observation. We further inform the
agent of its action space, initial observation, and
the desired goal state. Most importantly, we pro-
vide a few shot examples of the action observation
loop. We iteratively prompt the LLM to select an
action until the problem is solved or a maximum
number of time steps is achieved.

/ Create Tools >

Generate Action }

Solve Problems
in Environment

~

\ 4

Optimize Tools

A

Decide what tool
to use next

Descriptions @ [

] Identify best tool 1
based on score @

Generate Code A

inti Get
from Descrlptlons@ Observation Tool

¢ f Y

Execute

Y

Critique/Improve }
Code @

[Environment }

£y Modified
B GPT-35

Improve best tool
Based on Errors

N N

2N /

Code Booga

Figure 2: Overview of Modified LearnAct

4.3 Optimize Tools

After testing the newly generated tools in the en-
vironment, we obtained a record of useful infor-
mation to further modify the tools we generated in
3.1. Specifically, we identify and trace each tool
that was used and failed to determine the cause of
failure, such as an invalid action, code that failed
to compile, or incorrect function use. Based on this
feedback, we prompt an LLM with this trace to
either update the existing code to fix errors or add
more detailed usage notes to prevent future misuse
of that tool.

5 Experiments and Results

With our dataset size of 20, we reserved three prob-
lems (defined by a tuple of initial and goal state) for
training and optimizing our toolset and 17 for test-
ing. This is consistent with LearnAct (Zhao et al.,
2024). Since we only had access to GPT-3.5 (Ope-
nAl) we use this model for our reasoning module.
We set the temperature to 0.5 and top_p=1.0. These
metrics set the amount of determinism in the model.
For our coding module, we used codeBooga-latest
(Hugging Face, c), which scored highest on a col-
lection of HuggingFace problems (Hugging Face,
b). When using this model, we utilized the recom-
mended settings with a temperature of 1.31, top_p
of 0.14, top_k of 49, and a repetition penalty of
1.17. We ran our experiments three times and re-
ported an average over all trials. Our results are
reported in Table 1.

Task success rate measures the number of prob-
lems the agent solved within 20 time steps. A
problem is solved if all objects are at the desired
goal location. Average step accuracy refers to the

number of valid actions an agent takes. An in-
valid action is one where an agent responds with an
action that can’t be executed by the environment.
For example, an agent may try to pick up a ball
that’s in a different room. The average number of
steps refers to the number of tool calls required to
complete the task. Finally, we report the average
number of tokens sent to GPT-3.5.

Table 1 shows the results of our Modified Lear-
nAct against two baselines: the original LearnAct
and Voyager (Wang et al., 2023) on the Gripper
(Ma et al., 2024) environment. Our modifications
resulted in a considerable increase in task success
rate to 85%, which is even higher than the origi-
nal LearnAct with GPT-4 as the backbone model
(82.5% vs 85%). After training, the modified Lear-
nAct Agent needed less than half the number of
steps the original LearnAct agent needed, demon-
strating the effectiveness of the high-level meth-
ods our modified LearnAct Agent learned. The
fewer number of steps required to solve a task is
due to the strong increase in average step accu-
racy from LearnAct (27.7%) to modified LearnAct
(71.8%). Overall, the results demonstrate that our
modifications increased LearnAct’s overall perfor-
mance. However, a more thorough analysis, in-
cluding more complicated environments, such as
AlfWorld (Shridhar et al., 2020) is required in the
future.

Our modifications to LearnAct also resulted
in fewer tokens. Specifically, our method used
2.029M tokens, which is slightly better than the
2.373M tokens LearnAct uses. The reduction in
tokens is largely a result of a recursive code gen-
eration module. This module iteratively prompts

Models Task Success | Task Success Average Average
Rate (GPT 3.5) | Rate (GPT 4) | Step Accuracy | Number of Steps
Baseline 1: LearnAct 45% 82.5% 27.7% 9.1
Baseline 2: Voyager 2% 76.5% - -
Modified LearnAct 85.0% - 71.8% 4.3

Table 1: Test Results for Modified LearnAct and the Ablation Study on the Gripper Environment

GPT up to three times to generate code until it com-
piles successfully. Simplifying the code generation
into two tasks allows valid code to be generated
on the first pass nearly every time. Thus, breaking
down the coding problem into two subproblems sur-
prisingly reduced the total number of tokens used.
Given that LLMs are priced on the basis of tokens,
this improvement in token usage implies that our
modifications are cheaper and more practical.

To better understand how our modifications af-
fected the LLLM agent’s performance we individ-
ually tested our proposed changes on a LearnAct
agent.

5.1 Ablation 1: Modified LearnAct with one
step tool creation

The original LearnAct model does not decompose
the task of creating tools into subtasks of creating
tool descriptions and Python code. To isolate the ef-
fect of the decomposition of this task, we perform
an ablation study. We use the original tool gen-
eration prompt from LearnAct but leave the error
correction module and outsource code generation
to codeBooga. In each trial, the task success rate
was zero because codeBooga could not fully un-
derstand the problem and wrote code that could
not be executed in the environment. Thus, code-
Booga was unable to fully understand the task at
hand. This suggests that improving fine-tuning a
language model for codeing may compromise its
ability to process complex natural language queries.
Moreover, this highlights the fact that when using
language models fine-tuned on a task, one needs to
simplify the instructions and make queries as clear
as possible. Our complete model provides simple
queries to codeBooga by only asking it to write
code based on the docstrings.

5.2 Ablation 2: Modified LearnAct without
codeBooga

In our modified LearnAct we used codeBooga
(Hugging Face, c¢), an LLM fine-tuned on Python
code, for the coding of the high-level function that

composes the primitive actions. We performed
an ablation study, in which we analyzed the perfor-
mance of or modified LearnAct without using Code
Llama for the coding but GPT 3.5 instead. The re-
sults can be seen in row 5 in Table 1 (Ablation
2).

The task success rate drops from 85% to 58.8%,
which indicates the superior code generation ability
of codeBooga compared to GPT 3.5. The Python
code for the high-level functions GPT3.5 generates
is not exactly doing what the description specifies
compared to codeBooga, which can also be seen in
the increase in the average number of steps from
4.27 to 10.2. The step accuracy remains at around
72% (71.8% Modified Learnact vs 73.8% Modified
Learnact without codeBooga).

To understand the differences of the code gener-
ated between GPT-3.5 and CodeBooga we prompt
each to generate the function carry_to. We provide
the exact same prompt and docustring for the func-
tion and provide the resulting code in Figure 3 of
the appendix. The two generated codes are similar
except but the CodeBooga function provides an
extra check to ensure the robot is not in the same
room as the object when the function is called. Call-
ing move(’robot_loc’, ’robot_loc’) would trigger
an invalid action from the environment, so adding
the error handling for this edge case makes the
function more universally callable. Adding these
error handling steps affect step accuracy in this sim-
plified environment, however when solving more
challenging problems the extra logical capacity of
codebooga may be particularly valuable.

5.3 Ablation 3: LearnAct with Critique
Module

The original LearnAct recursively generates new
tools and directly tests them in the environment.
We modified this behavior by first prompting the
LLM to review its generated code and to ensure
it is composed of primitive actions. This lead to
a decrease of the average success of 11.76%, a
step accuracy of 17.55, and 27.9 average number

of steps taken out of a 30 step max. This loss
in performance is in line with our hypothesis that
longer prompts may confuse the LLM in problem
solving tasks.

6 Conclusion

We believe our model performs better for the fol-
lowing reasons. Previous work has shown that
LLMs are generally undertrained (Hoffmann et al.,
2022). By handing off code generation to a code-
focused LLM, even a smaller one, we leverage that
model’s higher concentration of code tokens dur-
ing training. The generalist model may not have
achieved this density of code tokens even if this
model were many times larger. Second, our error-
correcting module likely improves performance
by changing the probability density function the
LLM draws from. In the generation step, the LLM
has likely learned to focus on the text prompt and
draw from its code distribution. However, when
prompted to check for mistakes, its attention is fo-
cused on the pre-generated code, and it "knows"
that corrections are likely small deviations from
what’s given, thus a much smaller distribution to
draw from.

There are several exciting areas of future work.
First, our user uses action-only prompting. How-
ever, when analyzing several of our models’ failed
test cases, it seems that a lot can be resolved by
incorporating better planning. Moreover, using a
ReAct (Yao et al., 2022) loop may help the agent
navigate these environments better.

References

Compuer Science Department Universtiy of North Car-
olina at Chapel Hill. Statement on Diversity, Equity,
and Inclusion. https://cs.unc.edu/about/dei/.
Accessed on: 04/06/2023.

Robert M French. 1999. Catastrophic forgetting in con-
nectionist networks. Trends in cognitive sciences,
3(4):128-135.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-correct
with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Hugging Face. a. Big Code Models Leaderboard.
https://huggingface.co/spaces/bigcode/
bigcode-models-1leaderboard. Accessed on:
15/04/2023.

Hugging Face. b. CanAiCode Leader-
board. https://huggingface.co/spaces/
mike-ravkine/can-ai-code-results. Accessed
on: 02/04/2023.

Hugging Face. c. Codebooga. https://huggingface.
co/LoneStriker/CodeBooga-34B-v0.1-4.
Obpw-h6-ex12. Accessed on: 04/18/2023.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An analyt-
ical evaluation board of multi-turn 1lm agents. arXiv
preprint arXiv:2401.13178.

OpenAl. GPT-3.5 Turbo. https://platform.openai.
com/docs/models/gpt-3-5-turbo. Accessed on:
04/08/2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2024. Hugging-
gpt: Solving ai tasks with chatgpt and its friends
in hugging face. Advances in Neural Information
Processing Systems, 36.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Coté,
Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. CoRR,
abs/2010.03768.

The Universtiy of North Carolina at
Hill. University Office for Diversity and In-
clusion. https://diversity.unc.edu/#:~:
text=0ur%20mission%20for%20diversity%
2C%20equity, cultures%2C%20experiences%
2C%20and%20perspectives. Accessed on:
04/28/2023.

Chapel

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Lilian Weng. LLM powered autonomous agents.
https://lilianweng.github.io/posts/
2023-06-23-agent/. Accessed on: 02/04/2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Haiteng Zhao, Chang Ma, Guoyin Wang, Jing Su,
Lingpeng Kong, Jingjing Xu, Zhi-Hong Deng, and
Hongxia Yang. 2024. Empowering large language
model agents through action learning. arXiv preprint
arXiv:2402.15809.

https://cs.unc.edu/about/dei/
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/mike-ravkine/can-ai-code-results
https://huggingface.co/spaces/mike-ravkine/can-ai-code-results
https://huggingface.co/LoneStriker/CodeBooga-34B-v0.1-4.0bpw-h6-exl2
https://huggingface.co/LoneStriker/CodeBooga-34B-v0.1-4.0bpw-h6-exl2
https://huggingface.co/LoneStriker/CodeBooga-34B-v0.1-4.0bpw-h6-exl2
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
http://arxiv.org/abs/2010.03768
http://arxiv.org/abs/2010.03768
https://diversity.unc.edu/#:~:text=Our%20mission%20for%20diversity%2C%20equity,cultures%2C%20experiences%2C%20and%20perspectives.
https://diversity.unc.edu/#:~:text=Our%20mission%20for%20diversity%2C%20equity,cultures%2C%20experiences%2C%20and%20perspectives.
https://diversity.unc.edu/#:~:text=Our%20mission%20for%20diversity%2C%20equity,cultures%2C%20experiences%2C%20and%20perspectives.
https://diversity.unc.edu/#:~:text=Our%20mission%20for%20diversity%2C%20equity,cultures%2C%20experiences%2C%20and%20perspectives.
https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/

A Diversity Statement

Our backgrounds are diverse in that two of us are
graduate students in computer science and one in
education. Two of us grew up in the US and one in
Germany. We see diversity as a strength, enriching
one’s individual perspective. We are committed to
equity, diversity, and inclusion. We welcome any
feedback and look forward to opportunities to learn
from one another, and improve diversity, equity,
and inclusion. We fully support the statement of
the computer science department on equity, diver-
sity, and inclusion (Compuer Science Department
Universtiy of North Carolina at Chapel Hill), as
well as the statement of the University of North
Carolina at Chapel Hill (The Universtiy of North
Carolina at Chapel Hill).

B Group Members Contribution

This section gives an overview of each project team
member’s contribution.

Scott: Helped come up with a problem direc-
tion, perform a literature review, brainstorm ideas,
identify the code and helped write paper.

Isai: Proposed potential experiments and brain-
storm ideas, identified text-based learning environ-
ments, helped write paper.

Titus: Helped to understand the code repo, pro-
posed modifications, run experiments, helped writ-
ing the paper, created the figures

C LLM Prompts

ry_to(

move(robot_loc, object_loc)
k({object_name, object_loc, gripper_tool)
e{object_loc, destination_loc)
drop(object_name, destination_loc, gripper_tool)

arry_to(r

robot_loc object_loc:

m (robot_loc, object_loc)
pick{object_name, object_loc, gripper_tool)
move(object_loc, destination_loc)
drop(object_name, destination_loc, gripper_tool)

Figure 3: Comparison of CodeBooga and GPT3.5-turbo-16k Code Generation

You are a robot with a gripper that can pickup and move objects between different rcoms. You will be told the locations of the objects, the
location of the robot, and whather the gripper is free or occupied. You will also be told which cbjects need to be in which room.

Here are the actions in the domain.

move(<robol_loc> <room1>):
- Description: This action moves the robot from robot_loc to room1.
- Inputs: robol_loc (string): robol's current location, reom (string): room lo move to
- Required World State: Robot is at robot_loc
- Resulting World State: Robot has moved to room1

pick(<obj_name>,<obj_room> <gripper>):
- Description: This action picks up obj_name in obj_room using it's specified gripper.
- Inputs: obj_name (string): object to pickup, obj_room (string): the current room of obj_name, gripper (string): the gripper to use to pickup
obj_name
- Required World State: Robot is in obj_room. obj_name is in obj_room. gripper is free
- Resulting World State: gripper is not free, obj_name is in gripper

drop(<obj_name> <current_room> <gripper>)."
- Description: This action drops obj_name currently held in gripper in current_room.
- Inputs: obj_name (string): object to drop, current_room (string): the current room the robol is in, gripper (string): the gripper holding
obj_name
- Required World State: Robot is in current_room. obj_namae is in gripper. gripper is not free
- Resulting World State: gripper is free, obj_name is in current_rcom, robot is in current room

Please combine at least two of the above actions into functions composite helper functions. These functions should be useful to move objects
batween rooms. Please list a description of the function, the inputs to the function, the required world state to usa the funcion, the resulting world
state after the function is used and the basic functions used.

Figure 4: Example of Tool Description Prompt

‘Assume you have access to the the following functions. <insert functions and descriptions>

Example 1:

mave_pickup_drop(robot_loc, object_loc, object_name, destination_loc, gripper):

- Description: This function moves the robot from robat_loc to object_loc, picks up object_name using gripper, moves from object_loc lo
destination_loc, and drops object_name using its gripper.

- Inputs: robot_loc (string): current location of robot, object_loc ('string’): current location of objact, object_name (string): object to be moved,
destination_loc (string): destination to move object to, gripper (string): gripper to use to pickup and drop object

- Required World State: Robot is at robot_loc, object_name is in abject_loc, gripper is free

- Resulting World State: Robol is at destination_loc, object_name is in destination_loc, gripper is free

- Basic Functions Used: move, pick, drop

You will respond:

python
def move_pickup_drop(robot_loc, object_loc, objact_name, destination_loc, gripper):
maove(robot_loc, object_loc)
pick(object_name, object_lac, gripper)
maove(object_loc, destination_loc)
drop(object_name, destination_loc, gripper)

Now please implement the function carry_to(robot_loc, object_name, object_loc, destination_loc, gripper_tool), wrap all executable code with

- Description: carry_to(robot_loc, object_name, object_loc, destination_loc, gripper_tool): - Description: This function moves the robot from
robot_loc to object_loc. Then it picks up object_name using gripper_tool, moves from object_loc to destination_loc, and drops the object_name
using gripper_tool.

- Inputs: robot_loc (string): current location of the robot, object_name (string): name of the object lo be carried, object_loc (string): current
location of object_name, destination_loc (string): destination to move objecl_name to, gripper_tool (string): gripper to use to pick up and drop
object_name
- Required World State: gripper_tool is free
- Resulting World State: gripper_tool is free, robot is at destination_loc, object_name is at destination_loc
- Basic Functions Used: move, pick, drop.

Figure 5: Example of Python code Prompt

Please read through all the instructions carefully and analyze the produced code
for any errors. You are not allowed to ask any questions or make assumptions
on global variables. If there are errors in the code please correct them,
otherwise return the same code. If the required task is not solvable you should
say 'Impossible.” If there are errors in the code you should say 'ERROR' then
provide a correction.

Figure 6: Example of error correction prompt

