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Abstract

With recent legislation allowing sports gambling in some
US states, there is ample opportunity to bet and make money
on sportsbooks’ quoted odds and inefficiencies in their cal-
culations. In this paper, we explore different time-dependent
machine learning models and conduct experiments to deter-
mine their efficacy in predicting the outcome of NBA games.
We trained models to evaluate the outcome of each game by
examining the participating teams’ previous 10 games. We
further tune the hyper-parameters of these models, apply
regularization to prevent overfitting, experiment with vari-
ous loss functions and devise self-supervision tasks to aug-
ment their training. We finally show how our models can be
ensembled to further improve performance and outperform
popular modeling methods applied in the sports betting do-
main.

1. Introduction
The Professional and Amateur Sports Protection Act of

1992 (PASPA) imposed federal restrictions on sports bet-
ting. In 2018, the act was repealed leaving the regulation of
sports betting to the states. Today, sports betting is legal in
nearly half of the United States and has quickly become one
of the country’s fastest growing industries. Sportsbooks set
betting lines and must balance risk and reward when pric-
ing bets; offering payouts that are too low given the risk of
a bet will discourage gamblers and limit profitability while
payouts that are too large may expose the Sportsbook to
significant losses. To optimize profitability and minimize
risk, Sportsbooks must constantly adjust their prices based
on what bettors are betting on. Thus, Sportsbooks are akin
market makers; they quote some initial lines for a particu-
lar game and adjust their quotes based on supply and de-
mand to ensure they profit regardless of the game’s out-
come. While price discovery through supply and demand
works well in many markets, it can also lead to significant
market inefficiencies; the Gamestop short squeeze of 2021,
for example, demonstrates how prices may significantly de-

viate from their fair values. Given the ignorance of many
bettors and behavioral biases that encourage people to bet
in favor of their team, similar mispricings are feasible and
even expected in betting markets. In this paper, we seek to
use Deep Learning to model the win probabilities of NBA
games to help bettors make more appropriate betting deci-
sions and enable a more efficient betting market whereby
prices more closely reflect their expected values.

2. Related Work
The problem of predicting a games outcome has mone-

tary incentives and has existed since the beginning of sports
betting. Technological innovations of recent years have in-
creased both the amount and availability of data, encourag-
ing the use of Machine Learning and big data techniques
to model game outcomes. Lock et al. use Random Forests
to predict the live, in-game win probability of NFL games
[4]; their model performs well on easy examples – when
one team is significantly better than the other – as well as
in later stages of the games. However, their model has dif-
ficulty predicting the win probability at the beginning of a
game when teams are closely matched. Alameda-Basora
use Bayesian Networks to predict the total points scored in
NBA games at the end of each quarter. When backtested on
the 2018-2019 NBA season, his model generated a profit of
10%, thus indicating potentially inefficient betting market
prices. Finally, Torres used a Multilayer Perceptron (MLP)
to predict the winner in NBA games but found that NBA
“experts” could predict a games outcome with a higher de-
gree of accuracy. Further, he found his model only slightly
outperforms a simple linear regression model.

3. Dataset
Our dataset comes from nba.com and was scraped using

a Python API developed by [6]. Our models were trained
using all NBA regular season games from the 2008 – 2017
seasons with the 2017-2018 season used as the validation
set. Our trained models were then used to predict the out-
comes of games in the 2018-2019 NBA season. Our train-
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ing set contains 10,646 games while the validation and test
sets each include 1,230 games.

To structure the data to enable for the modeling of
time dependencies significant pre-processing was required.
Specifically, for each game G, we collect the results of the
last 10 games played by the home team H1, . . . , H10 and
the results of the last 10 games played by the away team
A1, . . . , A10. This structure enables our models to learn
representations that account for a teams overall quality and
their current ”form”; that is, how well they’ve played in re-
cent games. Each of H and A contains 94 features relating
to the game including:

• Basic Box Score Statistics: points, rebounds, assists,
steals, turnovers, fouls, etc.

• Advanced Box Score Statistics: team’s offensive and
defensive efficiencies, pace, etc.

• Miscellaneous Features: home indicator, team travel
indicator and days between games

Conveniently, the training, validation and testing sets are
all complete with no missing features. While there are 94
features for each game, it’s important to note that many of
these features are highly correlated such as 3 pointers made
and 3 pointers attempted. Given this high degree of corre-
lation, the feature space can likely be reduced significantly
using dimensionality reduction techniques without sacrific-
ing much loss in the explanatory power of the data. Further,
for each game the target label was manually derived and set
to indicate if the home team won game G. This definition of
the target label resulted in our dataset being unbalanced as
the home team was found to win roughly 60% of the games.
The complete dataset used for our experiments can be found
here.

4. Approach
As mentioned earlier, previous attempts to use Machine

Learning to model sports games have relied on methods
such as Random Forests, Bayesian Networks and MLPs.
While these approaches have achieved varying levels of
success for different sports prediction task, each method
utilizes an approach that ignores time dependencies. That
is, these model’s will make the same predictions regard-
less of the ordering of the training data. Failure to model
time dependencies is will likely lead to erroneous predic-
tions in the context of sports; good NBA teams for exam-
ple often go through periods where they play poorly just as
bad NBA teams may experience stretches where they play
well. Such periods of good or poor play may be a result
of easy stretches in a teams schedule, luck or more com-
plicated structural changes in a team due to injuries, player
acquisitions or managerial firings. Moreover, to better cap-
ture the time dependencies inherent in sports we propose

modeling games using Long short-term memory neural net-
works (LSTM) and Gated Recurrent Unit Networks (GRU).
These models are sequential in nature and have been used
to achieve state of the art predictions in various time se-
ries tasks across many domains. We also experiment with
the use of Convolutional Neural Networks (CNN). While
CNNs are predominately used in image classification set-
tings, Borovykh et. al [2] demonstrate their ability to cap-
ture conditional dependencies and effectively model finan-
cial time series data.

While LSTMs, GRUs and CNNs are accredited meth-
ods to model time series data, we anticipate several reasons
these models may fail to apply in the context of sports bet-
ting. We discuss the potential deficiencies of these models
and our strategies to alleviate them in the following sec-
tions.

4.1. Problem 1: Trivial Parameterizations
Blindly training any model on our target dataset may re-

sult in trivial parameterizations; due to the relative imbal-
ance of our dataset, a classifier can easily achieve a 60% ac-
curacy by simply always predicting the home team will win.
Alternatively, our model may learn parameterization such
that it always predicts the better team will win. To com-
bat these issues, we trained our models using an ↵-balanced
Focal Loss criterion [7] defined as follows:

FL(pt) = �↵t(1� pt)
�
log(pt) (1)

where pt corresponds probability the classifier assigns to the
an example to the correct class and ↵ and � are tune-able
parameters. ↵t is a scaling parameter that assigns different
weights to different classes and is often set such that in-
correct prediction from minority classes produce more loss
than erroneous predictions of the majority class. More-
over, with this weighting scheme, our models are encour-
aged to correctly classify instances in which the away team
wins. � controls the value assigned to well-classified exam-
ples. Larger values of � serve to assign less weight to well-
classified examples and incentivizes the model to accurately
classify the more difficult examples. Note that when � is 0
and alpha is the same for each class, Focal Loss reduces to
Cross Entropy loss.

4.2. Problem 2: Lack of Data
With 10 NBA seasons and over 10,000 training exam-

ples lack of data isn’t the first issue that comes to mind.
Relative to the immense size of our feature space, how-
ever, 10,000 training examples is likely insufficient. We
devise two strategies to tackle this problem. First, we at-
tempt to reduce the dimensionality of the feature space prior
to training our models using principal component analysis
(PCA), auto-encoders and MLPs. This may be a good idea
since many features are highly correlated and many more
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have low signal to noise ratios. In addition to reducing
the feature space, we also attempted to artificially increase
the amount of training examples using two self-supervised
surrogate tasks. The first surrogate task is a simple data
augmentation approach whereby training samples are both
weakly and strongly augmented. The weakly augmented
training example is then one-hot encoded to create a ground
of truth pseudo-label. This pseudo-label is then assigned to
the strongly augmented example and our models are tasked
with predicting this label. The second surrogate task in-
volves shuffling the ordering of the previous 10 home and
away games and forcing our models to predict the ordering
of such labels. In summary, we attempt to combat the curse
of dimensionality by both reducing the size of the feature
space and artificially increasing the amount of training ex-
amples.

5. Experiments
Several experiments were performed to identify the opti-

mal parameters for our models. In the following section we
discuss the training and parameter selection of our models.

5.1. Model and Hyper-parameter Selection
The first step in the experimentation process involved to

selecting a base recurrent network to build our prediction
model around. While we briefly explored a basic imple-
mentation of a recurrent neural network, it became clear that
performance would vastly improve with LSTM and GRU
networks; both of these architectures allow for greater con-
trol of state information and maintain meaningful memory
of previously processed game data. For each model, we fur-
ther explored varying the number of layers and the number
of hidden states in each layer. Figure 1) shows a visual of
the impact of these parameters; the number of layers cor-
responds to the number of stacked LSTM cells while the
number of hidden states corresponds to the number of cells
in each layer.

To find the optimal number of layers and hidden states
we first attempted select a paramaterization that overfit to
the training set with the goal of later applying regulariza-
tions to reduce such overfitting. This strategy ensures our
models have the capacity to represent the dataset. As seen
in figure 2 We found that a single layer with 64 hidden
states was sufficient to overfit. Increasing the number of
layers and hidden states also served to increase the amount
of observed overfitting. To limit the size of our architecture
search, we limited our search to evaluate 4 model parame-
terizations – 64 hidden features and 1 layer; 64 hidden fea-
tures and 2 layers; 128 hidden features and 1 layer; and 128
hidden features and 2 layers.

As for the CNN model, our architecture selection was
largely constrained by the dimensionality of the input data.
Moreover, the model utilized a single convolutional layer

Figure 1. Visualization of stacked LSTM modules.

with a kernel size of 10 x 1, followed by two connected
layers. ReLU activation and dropout layers were added in
between the model layers. We varied two hyper-parameters
for the CNN model: The number of output channels in the
convolutional layer and the output size of the first connected
layer. We found that increasing the output channels quickly
overfitted the data as seen in figure 3, and modifying the
output size of the connected layer did little to improve the
model. Thus, we settled on a single CNN model with 4
output channels in the convolutional layer and an output size
of 80 in the first fully connected layer.

5.2. Regularization Strategies
To reduce overfitting of we consider both the use of

dropout and weight decay. With dropout, hidden layers are
dropped randomly during training according to a tun-able
probability and the model is optimized over the restricted
network. Weight decay prevents overfitting by annealing
model weights on each training pass thus preventing overly
large weights from accumulating.

We found that dropout of stacked modules required very
high hyper-parameter values to produce any recognizable
regularization impact in the model; intuitively we believe
this effect is due to the fact that a single LSTM or GRU
module using hidden layers of 64 features was capable of
overfitting and thus dropout applied between stacked layers
was unable to prevent the final layer from overfitting. Con-
versely, we found that weight decay had a much greater reg-
ularization impact as shown in figure 4, where we achieved
peak validation accuracy with a weight decay parameter
value of 1⇥ 10�3. We believe the weight decay parame-
ter value provides the ”sweet spot” between incrementally
learning while not completely overfitting to new training ex-
amples. We thus chose to proceed with our experiments
using weight decay regularization, however in the future it
may be beneficial to try other techniques like L1 regulariza-
tion. With L1 regularization, the cumulative absolute value



Figure 2. Learning curves for variations of hyper-parameters in LSTM/GRU.

Figure 3. Training and validation accuraccies for variations of
hyper-parameters in CNN.

of network weights is minimized which consequently has
the effect of acting as a feature extractor. This may be a
more appropriate form of regularization given our feature
space which includes many irrelevant features. In contrast,
weight decay (L2 regularization) has the bias of spreading
out the information in the network; thus, a higher propor-
tion of the network weights will likely be assigned to the
many irrelevant features.

Figure 4. Learning curve for variation of weight decay hyper-
parameter.

5.3. Optimizing Focal Loss Parameters
Optimizing the focal loss parameters first involved se-

lecting an appropriate alpha-weighting scheme to handle

the class imbalance of our dataset. With just two unique

classes, setting ↵t = 1 � number of examples in class
total number of examples

ap-

pears most appropriate as this setting equates the maximum
loss from misclassifying all positive examples to the maxi-
mum loss achieved from misclassifying all the negative ex-
amples. We then continued to optimize �t. Figure 4 shows
the performance of our LSTM model with 2 layers and 128
hidden states for varying values of gamma. As can be seen,
the value of �t that produced that maximum validation ac-
curacy appears to lie between 1.5 and 2.5. Moreover, we
find that hard-negative mining and encouraging the correct
classification of the more difficult outlier examples forces
the network to learn more complex and less trivial parame-
terizations which improves generalization ability.

Figure 5. Learning curve for varying �t and ↵t = 1.

5.4. Optimal Embeddings
Given our dataset contains only 10,000 entries and 1,880

features for each entry (two teams last 10 games played) di-
mensionality reduction techniques were required to reduce
overfitting and improve generalization. We explore three
techniques to reduce the size of the feature space: PCA,
where data is projected into different dimensional space
using a linear combinations of features, auto-encoding,
where the embedding model learns to compress the feature
space while maintaining relevant information, and MLP en-
codings, where the features are passed through a multi-
layer perceptron resulting in fewer dimensions of linearly



combined features. The maximum validation accuracies
achieved by training an LSTM network over 10 epochs with
various embedding sizes is shown in figure 6.

Each embedding method tested improved generalization
of our models, albeit different optimal embedding sizes
were necessary for different embedding techniques. We
observed, however, that each of these embedding methods
showed decreasing accuracy as embedding size increased,
supporting our belief that reducing the dimensionality of the
data would allow for better generalization and less overfit-
ting. These techniques provided similar benefit to regular-
ization due to the nature of the dataset and were necessary
for improved performance.

Figure 6. Learning curves for variable embedding sizes with PCA,
Auto Encoder, and MLP.

5.5. Surrogate Tasks

To augment the training set with newly generated exam-
ples to address the curse of dimensionality we used of two
surrogate tasks as mentioned in section 4.2. The first task
took each training sample and created two augmentations,
one weak and one strong; the weak augmentation provided a
pseudo-label which was assigned to the strongly augmented
example. The networks were then tasked with predicting
the pseudo-label of the strongly augmented example. As
can be seen in figure 7, we were unable to improve vali-
dation accuracy with the first surrogate task, showing de-
creasing validation accuracy as the magnitude increased for
both weakly and strongly augmented sets. Given the fact
that augmentation was performed across a very large feature
space, we believe the efficacy was due to the fact that these
small perturbations accumulated over many important fea-
tures resulting in a training sample distant in feature space
from the original example. In future experiments, augmen-
tation would only be performed for a small subset of sup-
port features that don’t significantly alter the outcome of
each game; this method would effectively allow us to fill
our dataset with more ”correct” samples and generalize bet-
ter to missing data.

The second surrogate task performed involved shuffling
the orders of the last 10 home and away games and having
our models predict the labels of the re-ordered samples. As
can be seen in figure 8 this task was also unable to provide
additional training that improved performance. This may
indicate that the order of games does not aid in learning the
prediction task at hand. While neither of these surrogate
tasks served to improve the validation performance, both
produced interestingly displayed regularization affects that
helped reduce overfitting. Thus in future experiments it may
be interesting to consider applying these techniques in place
of other regularizers.

Figure 7. Learning curve for varying levels of data augmentation.



Figure 8. Learning curve for shuffling order of last 10 games as
training epochs increase.

5.6. Ensembling Models
The final experiment we performed was ensembling

models by training many models and using majority vote
to select a label for each sample. Combining the results
of many models has a tendency to reduce overfitting and
variance as the biases of each model are averaged. Fig-
ure 9 demonstrates this feature of ensembling methods – as
the number of models ensembled increased, the ensembled
model tended to perform better in validation and generalize
better to the data. This perhaps implies the models in the
ensembled were not correlated and thus by combining un-
correlated predictions variance was reduced and generaliza-
tion improved. In the future, we would test other methods
such as boosting and stacking.

Figure 9. Learning curve for ensembling models as ensemble size
increases.

6. Results
From our experiments, hyper-parameters proved to have

a significant impact on model performance. The validation
accuracy of the LSTM and GRU models were particularly
sensitive to the hidden sizes, number of layers, embedding
method, embedding size and gamma of the focal loss pa-

rameter. Moreover, for each model architecture and embed-
ding method, grid search was run to find the hidden size,
number of layers, embedding size and gamma that maxi-
mized validation accuracy. Table 1 shows the optimal vali-
dation accuracy’s achieved for each model and embedding
method. These are additionally compared against a baseline
Linear Regression classifier, Random Forest Classifier and
CNN model mentioned previously. As can be seen, LSTM
models appear to slightly outperform the GRU models. This
is consistent with the findings of others that LSTM architec-
tures are more equipped to handle longer time-dependent
sequences of data than GRU’s. Finally, we note that the
CNN performs quite well; given this fact and the effective-
ness of Borovykh’s CNNs models on financial data, such
models appear to be well equipped to handle time series
forecasting tasks. Overall, we find that each of these mod-
els produced modest out-performance against the baseline
Random Forest and Linear Regression Classifiers suggest-
ing some benefit to modeling time dependencies in NBA
games.

Table 2 shows the 5 top performing models on the valida-
tion set, the ensembled model and their performance on the
test set. As can be seen, a models performance on the vali-
dation set is not highly correlated with their performance on
the test set. The ensembled model, however, appears more
robust showing similar validation and testing accuracy. The
voting mechanism performed by the model thus performs
an averaging across many models which serves to reduce
the classifiers overall variance. This reduction in variance
indicates the individual classifiers in the ensemble may not
be highly correlated as if they were, less robustness to the
test set would likely be noted. Interestingly, the validation
accuracy of the ensembled model is larger than any of the
individual model. Moreover, reducing the variance through
bagging appears to improve the predictive performance of
the model. This might suggest many of these individual
classifiers are relying on leverage points to make predic-
tions; that is, they rely heavily on just a few features in
making a prediction. When using just a few leverage points
to make a prediction, we run the risk of outliers in these
features. Averaging across many models thus prevents the
model from relying heavily on any singleton feature. Such
adds a regularization effect analogous to weight decay that
improves generalization.

7. Conclusion
While we find that each of LSTM’s, GRU’s and CNN’s

provided improvements over the baseline time invariant
models, such improvements were modest. Several com-
plexities in the dataset greatly increased the difficulty of
the prediction task. One such difficulty were NBA rules
changes occurring over the training period which altered the
underlying data generator process and prevented our mod-



Model Hidden Size Number of Layers Embedding Size Gamma Validation Accuracy (%)
LSTM PCA Embedding 64 2 40 2.5 65.39
LSTM Auto Encoder Embedding 128 1 50 2.5 66.62
LSTM MLP Embedding 64 2 50 2 65.39
GRU PCA Embedding 128 2 50 2.5 65.97
GRU Auto Encoder Embedding 128 2 60 1.5 66.13
GRU MLP Embedding 64 2 50 1.5 65.06
Logistic Regression Classifier - - - - 62.85
Random Forest Classifier - - - - 64.55
CNN Model - - - - 64.96

Table 1. Model performance tested on data

Model Hidden Size Number of Layers Embedding Size Gamma Validation Accuracy (%) Test Accuracy
LSTM Auto Encoder Embedding 128 1 50 2.5 66.62 61.92
LSTM Auto Encoder Embedding 128 2 60 2 66.37 60.44
GRU Auto Encoder Embedding 128 2 60 1.5 66.13 59.46
GRU PCA Embedding 128 2 50 2.5 65.97 63.40
GRU PCA Embedding 128 2 50 1.5 65.79 62.58
Ensemble - - - - 68.45 65.05

Table 2. Model performance tested on data

els from generalizing well. One such rule change was the
reset of the shot clock after an offensive rebound. Prior to
2018, the shot clock was reset to 24 seconds after an of-
fensive rebound. In 2018, the reset of the shot clock after
an offensive rebound was reduced to 14 seconds. This ef-
fectively reduces the value of possession after an offensive
rebound since the expected points scored if you give a team
14 seconds to shoot is certainly less than the expected points
if you give a team 24 seconds to shoot.

Another limiting factor is that our dataset does not in-
clude every aspect that could influence the game outcome.
One notable missing feature is a teams starting line-up. A
team with strong performance in the past 10 games can
lose to a weaker team if key players are missing from their
lineup. Furthermore our networks were tasked with model-
ing the outcomes of games without this pivotal information.
In future work, we will explore mechanisms to augment our
dataset to include lineup information and other features that
may enable for more accurate models.

8. Work Division

See table 3 for division of work.
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