Multi-Level Selection for OOD Ensembles

Scott T. Merrill Hung-Tien Huang
Department of Computer Science Department of Computer Science
University of North Carolina University of North Carolina
smerrill@unc.edu hungtien@unc.edu
Abstract

Traditional machine learning models are trained under the assumption that the data
used for training the model will not change when the model is used for inference.
However, such assumption might not hold during inference as distribution shift
might occur. The Out-of-Distribution (OOD) generalization task aims to train
trustworthy worthy models under any hypothetical distribution shift. Prior works
tackle OOD generalization from different perspective, including but not limited to
representation learning, self-supervised learning, and model ensembeling [Liu et al.,
2021]). In this work, we apply genetic algorithms to construct ensembles where
the the training data and features of the underlying models are jointly optimized.
Given an ensemble produced by genetic algorithm, we further propose a post-hoc
mixture of expert training procedure that further improve OOD generalization
performance.

1 Introduction

Machine learning (ML) have shown outstanding performance in variety of applications. Yet,
traditional ML models are trained under the assumption that the data used for training the model
will not change when the model is used for inference. One approach to maintain robustness under
distribution shifts is to ensemble a diverse collection of models. Given each individual model is
reasonably accurate and produces independent errors with respect to the other models, mistakes may
cancel out leading to an ensemble with good generalization ability Johansson et al.|[2007]. There
are many ways such diversity can be induced in ensembles. We consider creating this diversity by
modifying the training data and features used by each individual model; this approach is similar to
the way ensembles are created in many classical ML models such as XGBoost [Friedman, [2001]] and
Random Forests [Breiman, [2001]]. We apply an Evolutionary Algorithm (EA) to perform feature and
training data selection. The EA optimizes a novel fitness function that we demonstrate is a good proxy
of OOD generalization. Finally, given an ensemble produced by a genetic algorithm, we propose a
post-hoc mixture of expert training procedure that further improves OOD generalization performance.
To the best of our knowledge, no evolutionary algorithm has been applied to select features for OOD
tasks.

2 Related Work

2.1 Sparsely-Gated Mixture of Experts

In ensemble methods, the predictions made by each expert are often averaged. Similar to ensemble
methods, mixture of experts (MoE or ME) model also maintain a collection of models. The difference
is that MoE assumes each individual expert specializes in different “aspect” of the task we want
to solve; hence, the output of individual experts should be mixed “differently” depending on the
current instance instead of weighing expert opinions uniformly as in ensemble methods. |Shazeer et al.

Preprint. Work in progress.

proposed a Sparsely-Gated MoE (SMoE) Layer that has a learnable gating function that generates a
sparsely distributed mixing coefficient to encourage specialties [Shazeer et al.|[2017]]. This designed
sparsity allows massive expert models to be trained efficiently.

2.2 Feature Selection (FS)

FS is a dimension reduction technique where the goal is to identify an optimal subset of features
for a specific task. [Ladla and Deepal demonstrates how reducing redundant, irrelevant, or noisy
features can improve classification efficiency and performance. Two categories of FS methods are
filter method and wrapper methods [Ladla and Deepa, 2011]]. Filter methods, typically exploit some
correlation measure in the dependent variable to pre-process features for a classifier |Yu and Liu
[2003]]. Wrapper methods consider the performance of the downstream classifier and feature subset
together. Filter methods may be problematic in OOD problems as the correlations in the training
dataset may not persist in the testing dataset due to possible distribution shifts. Wrapper methods
may suffer similar issues in OOD settings if the classifiers’ performance on in-distribution data isn’t a
good proxy for true OOD accuracy. However, wrapper methods can work well if the objective of the
classifier correlates with true OOD performance. Our work attempts to identify a metric that aligns
with true OOD accuracy to improve the of wrapper based FS selection.

Wrapper methods can be thought of as a search problem where the classifier tells how well a
particular feature subset performs. The large search space, interaction effects among variables and
latency in training a classifier make the search problem particularly difficult. To reduce the search
space, greedy algorithms such as Sequential Forward Selection and Sequential Backward Elimination
can be quite effective Ladla and Deepal[2011]]. However, these greedy strategies are deterministic
and are sensitive to local optima. In contrast, there’s a class of gradient free evolutionary approaches
which consider a population of solutions simultaneously and thus are less sensitive to local optima.
In recent years various Genetic Algorithms (GAs), Genetic Programming (GPs), Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO) have been successfully applied to the
problem of feature selection Xue et al.[[2016].

To the best of our knowledge, no evolutionary algorithm has been applied to select features for
OOD tasks. We speculate the reason for this may because the difficulty in coming up with a fitness
function that acts as a proxy of true OOD accuracy. We attempt to combat this difficulty by evaluating
model fitness based on out-of-bag (OOB) Error. We show how this OOB Error is, in certain problems,
a good indication of true OOD accuracy and moreover how it can be used to evolved feature sets that
perform well OOD.

3 Methods

In this section we will explain our method to evolve ensembles of XGB Trees |[Chen and Guestrin
[2016] for OOD prediction tasks. Evolution will identify optimal subsets of data and subset of
features used to train each individual model. A custom fitness function which judges how well all
the models work together in classifying OOD examples will be used to guide this optimization. We
empirically validate that this fitness function is a good proxy of OOD accuracy.

3.1 Evolutionary Framework

We next define our genetic encoding and the evolutionary operators that modify these encodings.
Note that our encodings rely on training examples being first pre-processed into distinct clusters.
This pre-processing step can be achieved, for example, through K-Means, Decorr Liao et al.[[2022]
or any hard-clustering algorithm. gives a pictorial description for our proposed framework.

Encoding: Each XGB Tree model m is represented fully by two vectors; a cluster vector
C = [ey, ..., cx] and a feature vector F' = [f1, ..., f4]. Each are binary indicator vectors where ¢; = 1
implies the m was trained on cluster ¢ and f; = 1 indicates the model has access to feature j.

Mutation: Mutations operate the same on both the cluster and feature vector. We define two
mutation operators. The first selects n elements from one of these vectors as candidates for mutation.
These n indices are each flipped independently with probability p. We also consider a simpler

Ensemble 1

Ensemble N

5 b

Parent 1

Parent 2

Ensemble 1

Ensemble N

E = 1 () =]
E = (o] [] Ensomo Ensembie Evsomble N
Child 1 Child 2 EE @
EE= %

(a) ustration of EVE-OOD. Models are mutated
within each ensemble based on fitness. Mutated
models replace the least fit models. Top perform-
ing models then undergo crossover. Two children
replace the worst performing ensembles.

(b) Illustration of WEE-OOD. Models are mutated
within each ensemble based on fitness. Mutated
models replace the least fit models. The weights
of most fit ensembles are mutated and worst per-
forming ensemble is replaced.

Figure 1: Ilustration of our framework.

operation where all k clusters and all d features are considered candidates for mutations and flipped
with probabilities p; and py respectively.

We perform mutations over either clusters or features but never both simultaneously. The intuition
behind this is it is easier to optimize one set of parameters at a time. Consider for example, a favorable
mutation to the feature vector that is matched with an unfavorable mutation to the cluster vector. If
the model’s classification accuracy improves or degrades, it is impossible to isolate the source of
improvement or degradation.

Crossover: We define two crossover methods which operate on ensembles of models. Each
ensemble F contains a collection of N models each [my, ..., m,]. The first crossover method selects
a random integer ¢ between 1 and n. Child 1 inherits a sample of ¢ models from Parent 1 and a sample
of the remaining n — ¢ models from Parent 2. Conversely, Child 2 inherits a sample of 7 models of
Parent 2 and sample of the remaining n — ¢ models from Parent 1. We define a second crossover
operation in which we select ¢ random models in Parent 1 and swap them with ¢ models in Parent 2.
This operation thus requires an additional hyperparameter ¢ representing the number of models to be
swapped.

Fitness Function: We borrow an idea from training random forests and define the fitness function
of our algorithm as the out-of-bag (OOB) error. The fitness of a model is defined by the average
accuracy when predicting on clusters the model was not trained on. The fitness of an ensemble is a
voting classifier of all models not trained on a particular cluster.

3.2 Evolutionary Voting Ensemble (EVE-OOD)

We show a visual representation of our first approach, which we refer to as EVE-OOD in in
We first initialize a population of M ensembles each containing N models. The encoding
of each model is initialized to be trained on a random set of clusters using a random set of features. The
random binary encodings for each are guided by a Gaussian distribution with their own parameters.
For each ensemble we first compute the OOB fitness of its constituent models. We then identify
the most fit models and perform a feature mutation with probability p ¢ and a cluster mutation with
probability 1 — ps. The new mutated model then replaces the least fit model in the ensemble based
on OOB fitness. After performing selection at the level of models, selection then occurs at the level
of ensembles. We identify the best performing ensembles based on their OOB fitness. These then
undergo a crossover creating new candidate ensembles that replace the worst performing members of

the population. We repeat this process for some fixed number of generations. We also considered
several variants of this formulation which we describe briefly in the appendix.

3.3 Weighted Evolutionary Ensemble (WEE-OOD)

WEE-OOD attempts to improve on the voting-based approach of EVE-OOD by evolving a
weighted ensemble. The pseudocode for WEE-OOD is shown in Algorithm 2 and a visual representa-
tion of this approach in[Figure Tl WEE-OOD begins by initializing N models and N weights. The
model mutations are performed similarly to EVE-OOD. After these mutations, the OOB fitness of
each weighted ensemble is calculated. We then identify the top ensembles, mutate only the weight
vectors, and use these mutations to replace the worst performing ensembles. Thus, we have again
defined a multi-level selection algorithm which first evolves good candidate models and proceeds to
evolve weightings of those models that work well together.

EVE-OOD and WEE-OOD both will produce a population of M ensembles at the end of g
generations of evolution. It’s common in evolutionary algorithms to maintain the most fit individuals
as the best solution. We consider this classical approach of taking the champion as well as an
alternative approach of combining all models in the ensemble in the final generation. We try bagging
all the ensembles predictions in the final generation as well as weighting each of their predictions by
the ensemble fitness.

3.4 Post-hoc Mixture of Experts

Suppose we use the abovementioned algorithm to come up with an ensemble model of size [NV
that is already doing a pretty good job at generalizing to out-of-distribution data. Weighing each
expert in the ensemble uniformly is simple yet naive way of aggregating expert outputs. However,
prior works suggest that ensemble method could benefit from learning an additional gating function
g(-) that maps an input z to a weight vector (w;)Y_, [Shazeer et al., 2017, Jacobs et al., 1991} Jordan:
and Jacobs|, [1993]]. The gating function is parameterized as a neural network and is optimized with
the following objective function:

L (g (), (m; (2))iL1,y) = aLinbag + Blourotbag + YLan (D

Lin-bag = softmax ((w;) z is in-bag wartms) (H (M (), 4)) 2 is in-bag wrt ms)
Loutof-bag = softmax ({w;) z is out-of-bag wrt m;) (H (M (), Y)) a is out-of-bag w.r.t ms 3)
Lan = softmax ((w;);L,) (H (m (z))7L, 4)

For a given instance z, we want the gating function to allocate most weight to the best performing
expert within the in-bag experts, which is entailed by L, pa; meanwhile, instead of forbidding
out-of-bag experts from contributing to the final inference, we want the gating function to allocate
some weights to the potential good-performing out-of-bag experts, which is encouraged by Lout-of-bag;
lastly, Lqy attempts to encourage the gating function to weigh the contribution of all experts jointly to
achieve better final inference.

4 Experiments and Results

4.1 Real-World Dataset

We consider adult [Becker and Kohavi, |1996] dataset from UCI machine learning repository. We
arbitrarily choose one of the predictor variables and make in-distribution and out-of-distribution sets.
Instances with attribute “workclass” equal to “federal-gov”, “local-gov”, “state-gov” are considered
as out-of-distribution and the rest being in-distribution. The in-distribution dataset is split into training
set, validation in-distribution set, and test in-distribution set following the 80/10/10 splitting ratio. The
out-of-distribution dataset is split into validation out-of-distribution set and test out-of-distribution set

with 50/50 ratio.

4.2 Fitness function Alignment Case Study

While there are several critical hyperparameters in our algorithm, we recognize the clustering
algorithm and number of clusters as arguably the most important. These parameters directly influence

our fitness function. Since evolution will be optimizing this fitness objective, it’s important for it
to be representative of true OOD accuracy. We design an experiment to study the alignment of our
proposed fitness function with the true OOD accuracy. We perform a grid search over the number
of clusters to use and different clustering algorithms. Specifically, we use K-Means, hierarchical
clustering, DBSCAN and Decorr|Liao et al.|[2022]. We then create 100 ensembles each randomly
initialized with 25 models. Finally, we compute the OOB fitness of each ensemble and the true OOD
accuracy of each ensemble. We define alignment as the r2 obtained by regressing the OOB fitness
onto true OOD accuracy.

We show a heatmap of these 72 values for different parameterization in We notice that
there appears to be a number of clusters where alignment is maximized. And, importantly, we also
notice that the relationship seems continuous; similar cluster bins produce similar alignment scores.
Finally, we are excited to see that with 40 bins and using K-Means to bin our data, we can achieve an
r2 of 0.68. Given the alignments under certain parameterization, we believe this verifies OOB error
as a logical metric to optimize for.

We design one more case study which to analyze the alignment of our fitness function. This study
was inspired by analyzing the meta-data on many runs of our algorithm. We noticed an interesting
relationship. Specifically we realized that the size of the cluster encoding vectors were quite strongly
correlated with the fitness function alignment. To better understand this relationship, we perform
a similar experiment to the previous one. However, instead of random initialization, each model is
initialized to be trained on at most 2 clusters. We compare this to an initialization where models are
trained on all but 2 clusters. We report the results in

From this we see that training on fewer clusters seems to be really strongly related to alignment.
Importantly, these alignment scores are less sensitive to the number of clusters as we originally
observed. This is exciting from a practical standpoint and might signify robustness of this fitness
function to these hyperparameters. The correlations seem so high it’s almost too good to be true.
At first, we believed the classifiers may be learning nothing and the fitness and OOD accuracies
may just have both been around 50 percent. However, both fitness and OOD accuracies appear
substantial and this isn’t the case. We use these insights to guide our hyperparameter selection in
our proceeding experiments. Specifically, we make two modifications to our algorithms. Instead of
randomly initializing our cluster encodings according to a Gaussian distribution, we initialize them
to be trained on at most 2 clusters; we hope evolution will slowly complexifying models. We also
update our fitness function to add a term which encourages models to use fewer clusters and a term to
encourage diversity. In our experiments we compare different parameterizations of the below fitness
functions which generalizes the original fitness function.

fitness = Accuracygp
+ a (1 — mean cosine distance between all other models in ensemble)

&)

+o(1 number of clusters model used
total clusters

4.3 Analysis

We ran EVE-OOD and WEE-OOQOD for 30 generations on the adult dataset on clusters of sizes
10, 30 and 50 produced by K-Means. We considered ensemble sizes of sizes 15 and 25. We finally
varied alpha and beta to be 0, 0.1, and 0.5 . We held all other parameters constant and save the careful
understanding of these parameters as a key area of future work.

We show our results and compare them to three baselines. An XGB using all features, an ensemble
of size 25 XGB models where features are selected randomly, and an EoA model. We also show
our best models in our approach during the midterm report. A key distinction between these models
we presented earlier in the semester is that they attempt to create diverse ensembles by optimizing a
fitness function for quality diversity (QD) Pugh et al.|[2016]); the hope is by optimizing QD models
will create independent errors that will cancel out and the ensemble will be able to generalize well
OQD. In this report, we instead try to optimize a function to approximate true OOD accuracy. We
draw this comparison to emphasize the fact that approximating true OOD accuracy directly seems like
a more promising approach than to optimize for QD. We speculate this may not be a unique quality of

Non-random Cluster Enceding Initializations

Random Cluster Encoding Initializations Clusters 5.0 {min_zeros 1.0, max_zeros 2.0) 023

- 02
st s ma .
os

Clusters 10.0: min_zeros

Los 06
Clusters 20.0: (min_zeros ax_zeros 19.0) 081

Clusters 20.0: {min_zeros 1.0, max zeros 2.0) - 00062

Clusters 30.0: (min_zeros

Clusters 30.0: {min_zeros 1.0, max_zeros 2.0} 00085

[* R (e s e . 02
. max zeros

0024

3 028 Clusters 40.0: (min_zeros

Clusters 50.0: {min_zeros 0072

kmeans
duster_method

(b) Cluster Encodings have between min_zeros and at
(a) Gaussian Distributed Cluster Encodings most max_zeros

Figure 2: Heatmap of fitness alignment.

EAs but rather apply to ensemble based OOD generalization approaches in general. We specifically
see that optimizing an approximate of OOD accuracy to provide great benefit. We also note
that the best models for both EVE-OOD and WEE-OOD were found using 10 clusters. This is likely
because with fewer clusters, the search space for which we optimize over is smaller. We speculate,
with more generations of evolution, the performance of the models with more clusters could surpass
the results we provide below. We lastly point out that we also explored making predictions based on
all of the ensembles in the final generation rather than just the "champion" with the highest fitness.
We studied both an un-weighted voting prediction of all ensembles and a fitness weighted scheme.
We don’t report the performance below, and only note that all accuracy metrics can be improved very
marginally by performing this additional ensembling step.

Classifier Train | Test-ID | Test-OOD
Baseline 1: Logistic Regression | 83.32 | 82.64 77.79
Baseline 2: MoE 84.70 | 84.61 78.28
Baseline 3: EoA 85.65 85.55 80.66
Baseline 4: XGB 89.52 87.27 83.75
Baseline 5: Ensemble XGB 89.33 87.14 83.62
EVO(l, n, f) 86.44 | 85.57 79.84
CoEVO(l, n, f) 84.25 | 84.18 78.03
EVE-OOD 8596 | 87.19 84.00
WEE-OOD 86.07 | 87.33 83.87

Table 1: Accuracy Comparison on Adult Dataset

To further understand our fitness function we plot both, the fitness alignment, mean number
of clusters used and the true OOD accuracy. We show the results when 10 clusters are used. We
see higher values of o and 3 do indeed seem to improve fitness alignments which is presumabley
driven by these parameters encouraging training on fewer clusters. However, maintaining this better
alignment doesn’t seem to improve OOD performance. This is a strange result and perhaps indicates
we need to perform more generations of evolution.

Another interesting result that merits investigation is the large initial drop in alignment in the
early generations of evolution. We hypothesize this is a result of our mutation and crossover scheme.
Specifically, greedily mutating the best models and using them to replace the worst performing
models greatly reduces cluster diversity. After just a few generations, many of the models in each
ensemble will contain models with similar cluster encodings. We demonstrate this claim in|Figure 6al
of the appendix. We demonstrate on a simple example with only 10 clusters. We plot the models in a
single ensemble and show the number of models trained on cluster i; we track this distribution every
5 iterations. We notice the distribution begins relatively uniform which should be expected as this is
how we initialized it. However, after just a few generations, the distribution becomes multi-modal.

Best Model WEE-O0D Best Model EVE-00D

Figure 3: Best models found from experiments

As the best performing models are mutated to replace the worst performing once, cluster diversity
vanishes. After 20 generations, the total number of clusters being used for training has more than
doubled which perhaps explains the drop in fitness alignments. Interestingly we found that many
ensembles converge to a very similar distribution after 20 generations regardless of initialization. We
show another cluster distribution in to emphasize this point. This is likely a result of our
crossover operations which encourages information sharing between ensembles. This analysis brings
up an important direction of future work; how can we modify our mutation operation and model
replacement scheme to prevent certain clusters to be used for training on nearly all models? We’ve
tried randomly replacing models rather than performing our greedy mutation; while this slows the
process of converging to high density clusters, it doesn’t seem to prevent the behavior entirely.

Fitness Alignment Number of Clusters Validation Accuracy

alpha alpha alpha
—o0 —0
0.1 50 01 0830 01

05 T 05 T 05

=
o
<

=
3

45 0825

=
-
é

&
=

0.820

=

=
-
w

'
0.815

1_squared

val_ood

mean_cluster_I1_norm

=
o

w

=

0.810

=
N1

0805
01

00 0800

[5 10 15 20] ES) [} 5 10 15 20 = 0 0 5 10 15 20 F] 0
generation generation generation

Figure 4: Alpha’s impact on Fitness Alignment, Mean Cluster Encoding and OOD Accuracy

In we show the mean feature vector size of the models through several generations. The
dataset we considered has 14 total features and our models seem to select more than half the features
on average. It’s reassuring to see that the more fit models indeed have larger feature subsets than
worse performing models. We mentioned previously, that multiple ensemble populations converged
to similar cluster distributions after 20 generations. We find that ensembles with similar cluster
distributions after 30 generations also have similar feature distributions after 30 generations. We
show an example of this in|Figure 7aland [Figure 7b| It’s possible that this is again result of crossover
operations. It’s also possible that evolution is identifying the optimal feature subsets over the given
similar cluster distributions, implying our methods are performing FS appropriately.

Fitness Alignment Number of Clusters Validation Accuracy

L N T

beta
—_—0

01
05 0s

=
o

0830

=
3
=
o
=)

=

0825

=
-

=
&
=

0.820

-

r squared
=
=
mean_cluster_I1_norm
val_oad

=
i

0.815

w
=

=
N1

0810

=

[} H 1 15 20 b 0 [} 5 10 15 0 = 0 0 5 10 15 0 P 0
generation generation generation

=
e

Figure 5: Beta’s impact on Fitness Alignment, Mean Cluster Encoding and OOD Accuracy

4.4 Post-hoc Mixture of Experts

We report the performance of our proposed gating function optimized with on one of
the ensemble produced by our method in[Table 2] We attempted 4 combinations of «, 3, and ~y to
experiment with the contributions of each terms in[Equation 1} In[Table 2] uniform refers to all model
receive equal weights; vanilla refers to« = § = 0 and v = 1, ib-oob refers toaw = = 1 and v = 0,
oob refers to « = v = 0 and 5 = 1, and ib-oob-va refers to &« = 5 = v = 1. We can evidently
determine that the ensemble benefits from having a gating function that allocates weights to each
expert dynamically during inference. However, it seems that decomposing into Liy.pae and
Lout-of-bag does not provide further boost in performance compare to that of optimized with plain L.

ensemble 1 val-id | val-ood | test-id | test-ood
vanilla 86.44 | 82.40 87.68 82.68
ib-oob 85.99 | 82.43 87.24 82.68
oob 85.32 | 81.58 86.19 81.00
ib-oob-vanilla | 86.44 | 82.62 87.63 82.90
uniform 85.10 | 80.23 80.35 80.37

ensemble 2 val-id | val-ood | test-id | test-ood
vanilla 86.32 | 82.43 87.68 87.62
ib-oob 86.32 | 81.85 87.24 82.35
oob 85.76 | 82.46 86.19 82.35
ib-oob-vanilla | 86.55 82.59 87.63 82.90
uniform 85.05 80.45 80.75 80.30

Table 2: Accuracy Comparison on Adult Dataset for Mixture of Experts Experiments

5 Conclusion and Future Work

While this research to still be incomplete, we believe our work and early results show signs of

encouragement. In particular, the alignment of OOB fitness with true OOD accuracy is exciting
and gives us hope of the feasibility of applying evolutionary algorithms for OOD generalization.
Moreover, our method contributes to the field by providing a fitness function and framework for
evolution algorithms to be applied to OOD problems. By comparing the performance we reported
earlier this semester, we also contribute the idea that optimizing approximations OOD accuracy may
be more beneficial than optimizing for QD |Pugh et al.| [2016] in constructing OOD ensembles. We
hope our work encourages others to explore variants of OOB fitness. Another really exciting direction
of future work would be to define a crossover operation on the individual model level. There has been
work to incorporate crossover type operations to decision trees so incorporating a similar framework
may enable a more directed and efficient optimization in the space of models |Papagelis and Kalles
[2001]].

References

Yugiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey
on evolutionary neural architecture search. IEEE transactions on neural networks and learning

systems, 34(2):550-570, 2021.

UIf Johansson, Tuve Lofstrom, and Lars Niklasson. The importance of diversity in neural network
ensembles - an empirical investigation. In 2007 International Joint Conference on Neural Networks,
pages 661-666, 2007. doi: 10.1109/IJCNN.2007.4371035.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189 — 1232, 2001. doi: 10.1214/a0s/1013203451. URL https://doi.org/10!
1214/a0s/1013203451.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001. ISSN 0885-6125. doi:
10.1023/a:1010933404324.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representations, 2017. URL https://openreview,
net/forum?id=BilckMDqlg.

L. Ladla and Deepa. Feature selection methods and algorithms. International Journal on Computer
Science and Engineering, 3, 2011.

Lei Yu and Huan Liu. Feature selection for high-dimensional data: A fast correlation-based filter
solution. volume 2, pages 856-863, 01 2003.

Bing Xue, Mengjie Zhang, Will N. Browne, and Xin Yao. A survey on evolutionary computation
approaches to feature selection. IEEE Transactions on Evolutionary Computation, 20(4):606-626,
2016. doi: 10.1109/TEVC.2015.2504420.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
16. ACM, August 2016. doi: 10.1145/2939672.2939785. URL http://dx.doi.org/10.1145/
2939672.2939785.

Yufan Liao, Qi Wu, and Xing Yan. Decorr: Environment partitioning for invariant learning and ood
generalization, 2022.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79-87, 1991. doi: 10.1162/neco0.1991.3.1.79.

M.IL Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the em algorithm. In Proceedings
of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 2,
pages 1339-1344 vol.2, 1993. doi: 10.1109/IJCNN.1993.716791.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. Quality diversity: A new frontier for evolu-
tionary computation. Frontiers Robotics Al, 3:40,2016. URL https://api.semanticscholar|
org/CorpusID:21713708.

Athanasios Papagelis and Dimitris Kalles. Breeding decision trees using evolutionary techniques.
pages 393-400, 01 2001.

https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://api.semanticscholar.org/CorpusID:21713708
https://api.semanticscholar.org/CorpusID:21713708

A Model Variants

Variant 1 Rather than mutating only the feature or the clusters. A single model is mutated twice;
once modifying only the features and once modifying only the clusters. Moreover, two
new models are created; 1 in which the clusters are the same as the original model but the
features are different, and 1 in which the features are the same as the original model but the
clusters are mutated.

Variant 2 Rather than replacing the worst performing model, we also consider replacing a model at
random. We found this helpful in maintain within ensemble diversity.

B Cluster and Feature Distributions of a Single Ensemble

Ensemble 0: Generation 0 Ensemble 0: Generation 5 Ensemble 0: Generation 10 Ensemble 0: Generation 20
8 20.0
7 @ 75 20
6 150
15 15
; 5 25
£ 10.0
g 1 ’ 1
] 75
2 5 50 5
1 25
o o 00 o
0o 25 5.0 15 0.0 25 50 15 0.0 25 5.0 15 oo 25 5.0 15
Cluster Index Cluster Index Cluster Index Cluster Index
(a) Cluster Distribution of Ensemble Population 0
Ensemble 2: Generation 0 Ensemble 2: Generation 5 Ensemble 2: Generation 10 Ensemble 2: Generation 20
& s 18
u 175
5 150 50
1 i
125
Q 4 10 125
g ; 10.0 8 10.0
g
- 75 . 75
2
5.0 . 50
1 25 2 25
o 0.0 o 00
0o 25 5.0 15 0.0 25 50 15 0.0 25 5.0 15 oo 25 5.0 15
Cluster Index Cluster Index Cluster Index Cluster Index

(b) Cluster Distribution of Ensemble Population 2

Figure 6: Cluster distributions.

10

Mean Features Selected

Ensemble 0: Generation 0

Ensemble 0: Generation 5 Ensemble 0: Generation 10

Ensemble 0: Generation 20

175 =
150 0 20
. 20
125
o 15 15
fn 15
§ 0.0
E 75 10 10 10
50
5 5 5
25
0.0 0 0 ol
0 5 10 0 5 10 0 5 0 5 0
Feature Index Feature Index Feature Index Feature Index
(a) Feature Distribution of Ensemble Population 0
Ensemble 2: Generation 0 Ensemble 2: Generation 5 Ensemble 2: Generation 10 Ensemble 2: Generation 20
1 75 1
20
2 50 14
L 10 125 N 15
2 10
% 8 0.0 .
T 5 75 0
6
4 5.0 4 s
2 25 2
0 0o 1 0 0
0 5 10 5 10 0 5 0 0 5 0
Feature Index Feature Index Feature Index Feature Index
(b) Feature Distribution of Ensemble Population 2
Figure 7: Feature distributions.
Feature Count F'rog ression
10.0 num_clusters
— 10
95 X
- T — 50
9.0 4
85 4
8.0 4
75 4
T T T T T T
0 5 10 15 20 25
generation

Figure 8: Feature Count Progression

11

	Introduction
	Related Work
	Sparsely-Gated Mixture of Experts
	Feature Selection (FS)

	Methods
	Evolutionary Framework
	Evolutionary Voting Ensemble (EVE-OOD)
	Weighted Evolutionary Ensemble (WEE-OOD)
	Post-hoc Mixture of Experts

	Experiments and Results
	Real-World Dataset
	Fitness function Alignment Case Study
	Analysis
	Post-hoc Mixture of Experts

	Conclusion and Future Work
	Model Variants
	Cluster and Feature Distributions of a Single Ensemble

