Evolutionary Approaches for OOD Ensembles

Scott T. Merrill
Department of Computer Science
University of North Carolina
smerrill@unc.edu

1 Introduction

Traditional Machine Learning (ML) models are trained under the assumption that the training data
and testing data follow the same distribution. However, such assumption might not hold in practice.
The Out-of-Distribution (OOD) generalization task aims to train trustworthy worthy models under
any hypothetical distribution shift. One approach to this problem may be to ensemble a diverse
collection of models. Given each individual model is reasonably accurate and produces independent
errors with respect to the other models, mistakes may cancel out leading to an ensemble with
good generalization ability Johansson et al.|[2007]. This paper explores several approaches based
on Evolutionary Algorithms (EA) to construct ensembles for OOD generalization. In total, four
algorithms are considered which can be broadly categorized based on the evolutionary fitness function
they are optimizing. Two algorithms attempt to optimize for Quality Diversity (QD) [Pugh et al.
[2016]; that is, models that are both accurate and novel. The second class of algorithms attempts to
optimize a fitness function to approximate the true OOD accuracy. We compare the two approaches
and comment on the appropriateness of each objective for OOD generalization.

2 Related Work

2.1 Neural Architecture Search

Neural architecture search (NAS) treats the architecture of a NN as a hyper-parameter and attempts
to automate the network design. NAS can be mathematically formulated as an optimization problem:

AF = arg min L (A7 Dtrain» Dﬁtness) €))
AcA
where A is the search space of neural architectures and L (-) is a loss function that evaluates the
performance of an architecture A on a fitness evaluation dataset Dgy,eqs after being optimized on the
training set Dy [Liu et al.|[2021]].

The NAS optimization problem described in is typically solved with one of the three
approaches: reinforcement learning, gradient-based search, and evolutionary-based methods. Among
which, we focus our discussion on evolutionary methods that apply genetic operations such as
mutation and cross-over to potential solutions in the search space. These methods do not require
gradient information and are therefore less susceptible to local minima and particularly well-suited
for optimization problems with an objective function that does not have a closed-form expression
Darwish et al.|[[2020]].

2.2 NAS-O0OD

Few have attempted NAS strategies for out-of-distribution (OOD) generalization. To the best of our
knowledge, no evolutionary NAS strategies have been applied to the OOD generalization problem.
One major challenge using NAS is that NN could easily overfit to training data as both the architecture
and the weights are optimized simultaneously; this leaves the learned networks particularly vulnerable

Preprint. Work in progress.

to distribution shifts. Bai et al.| proposed NAS-OoD using a conditional data generator to generate
synthetic OOD data and further use it to guide NAS |Bai et al.|[2021]]. However, NAS-OoD not only
assumes knowledge about the context of each instance but also relies on gradient to perform the
search, which is susceptible to local minima. Our method does not require knowledge about the
context and does not require gradient to perform the search.

2.3 Ensemble of Averages (EoA)

While traditionally the final NN weights found through gradient descent are used, |Arpit et al.| [2022]]
take an alternative approach of calculating the moving average of network parameters over the
optimization trajectory. EoA ensembles together several moving-average weights collected from
networks with different hyper-parameters and initializations. The authors show that ensembling these
moving average models is beneficial for OOD generalization. We highlight EoA as we see many
parallels with our approach of combining all of the models in the final generation. Thus, in a similar
fashion, we are averaging over the optimization trajectory of an EA.

2.4 Sparsely-Gated Mixture of Experts

In ensemble methods, the predictions made by each expert are often averaged. Similar to ensemble
methods, mixture of experts (MoE or ME) model also maintain a collection of models. The difference
is that MoE assumes each individual expert specializes in different “aspect” of the task we want
to solve; hence, the output of individual experts should be mixed “differently” depending on the
current instance instead of weighing expert opinions uniformly as in ensemble methods. Shazeer et al.
proposed a Sparsely-Gated MoE (SMoE) Layer that has a learnable gating function that generates a
sparsely distributed mixing coefficient to encourage specialties [Shazeer et al.| [2017]]. This designed
sparsity allows massive expert models to be trained efficiently.

3 Methods

We next discuss our approach to construct evolutionary ensembles for OOD prediction. We first
describe two algorithms that use QD metrics to identify diverse populations of NN architectures. We
then discuss an approach which attempts to construct a fitness function to approximate a models true
OOD performance.

3.1 Quality Diversity Approaches

In this section we show how to evolve the number of hidden units, hidden layers and feature subsets
of a population of NNs that produce predictions with high novelty and accuracy.

3.1.1 Genetic Encoding and Operators

To evolve a population of NNs using GA, we must define the space to be evolved, and the operations
which will be applied to evolve the space. Each network, n,, in a population is encoded by a layer
vector L = [ly, ..., 1;] and a feature vector F' = [f1, ..., f4]. The value /; in the layer vector defines
the number of nodes in the ith hidden layer of the network. Thus, the size of L governs the number of
layers in the network. In contrast, the size of F' is of fixed length equal to the number of features in
our dataset; each f; corresponds to a binary variable indicating whether to use feature i when training
the network. Moreover, the input size of network n,,, will have an input size equivalent to the number
of Isin F.

Network encoding are evolved using only mutation operations. Mutations are easily implemented,
offer a naturally divergent search, and avoid any assumptions that similar network encodings should
behave similarly. A mutation, as we define them, performs one of four operations with equal
probability.

Insert a layer Adds a layer to a random position in the network. The number of nodes in this
new layer will also be randomly specified by hyperparameters dictating the minimum and
maximum nodes allowed in a layer.

Swap a layer Swaps two layers selected randomly.

Remove a layer Remove a layer selected at random.
Randomize the feature encoding Generates a new binary feature encoding at random.
To prevent networks from becoming too deep or too wide, the insert and remove operations are

controlled by hyperparameters that restrict the maximum number of layers and allowable nodes in
each layer.

Train Sparse

(LI

Add Most
Diverse to
Ensemble

k Train Initialize

Individual
Population
Networks B

Mutate
Population

(a) An overview of our proposed evolutionary (b) An overview of our proposed co-evolutionary
OOD ensembles (EVO-OOD) method. OOD ensembles (CoEVO-OOD) method.

Figure 1: Overview for both of our proposed evolutionary ensemble algorithms.

3.1.2 Evolutionary NaS OOD Ensembles (Evo-NaS)

Figure 1ajsummarizes our first approach which we call, Evo-NaS. We first randomly initialize a set
of P = [n,, ..., n,| network encodings. Due to the computation limitations of training each network
in the population on every evolutionary generation, we train each network for a just a few epochs to
get an idea of the solution it’s learning. After each network is trained, the fitness of each network
is computed as a function of its accuracy and novelty with respect to the existing ensemble. These
methods are computed differently for regression and classification tasks as described below.

prop; ;= (N01 + NlO) / (NOO —|—N01 —|—N10)
Classification Task: fitness;; = accuracy + prop; ;
Regression Task: fitness;; = r? + cosdist;;

Where prop; ; is the proportion of error differences between classifiers i and j. N°! implies classifier
i made an incorrect prediction while classifier j made a correct prediction. And cosdist;; refers
to the cosine distance between two prediction vectors. Note that in both tasks, fitness encourages
high accuracy and diverse errors with respect to other classifiers. The NN with the highest fitness is
then added to the ensemble and the ensemble is trained using SMoE. The designed sparsity of this
model enables a large collection of models to be trained more efficiently than if they were trained
individually. The current population is then mutated and the next generation begins. This process is
repeated for a fixed number of generations. Note the number of generations is a hyperparameter that
directly governs the number of experts included in the model.

3.1.3 Co-Evolutionary NaS OOD Ensembles (CoEvo-NaS)

demonstrates our second approach, which we call CoEvo-NaS. The premise is to co-
evolve m distinct populations. Each population will evolve NNs with different characteristics. One
population, for example, may be evolving NNs with a certain amount of noise added to the features
and a Tanh activation function while another population may only be evolving a population of NNs
with no noise that strictly use RelUs. Like Evo-NaS, in each population, we evolve the number
of units, layers and feature subsets. The idea is to then ensemble the single best model in each
population.

CoEvo-NaS begins by randomly initializing a set of encodings in each population. Each network in
each population is pre-trained and the network with the highest fitness with respect to the existing
ensemble on the prior generation are aggregated and trained using SMoE. Finally, each population is
mutated. This process is repeated for a fixed number of generations. Unlike Evo-NaS, the number
of experts in CoEvo-NaS is controlled by the number of distinct populations, not the number of
generations of evolution run.

3.2 OOD Approximation Approaches

In this section we will explain two methods to evolve ensembles of XGB Trees |[Chen and Guestrin
[2016] for OOD prediction tasks. Evolution will identify optimal subsets of data and subset of
features used to train each individual model. A custom fitness function which judges how well all the
models work together in classifying OOD examples will be optimized.

3.2.1 Genetic Encoding and Operations

We define our genetic encoding and the evolutionary operators that modify these encodings. Note
that our encodings rely on training examples being first pre-processed into distinct clusters. This
pre-processing step can be achieved, for example, through kmeans, Decorr|Liao et al.| [2022] or any
hard-clustering algorithm.

Encoding: Each XGB Tree model m is represented fully by two vectors; a cluster vector C' =
[c1, ..., cx] and a feature vector F' = [f, ..., f4]. Each are binary indicator vectors where ¢; = 1
implies the m was trained on cluster ¢ and f; = 1 indicates the model has access to feature j.

Mutation: Mutations operate the same on both the cluster and feature vector. We define two mutation
operators. The first selects n elements from one of these vectors as candidates for mutation. These n
indices are each flipped independently with probability p. We also consider a simpler operation where
all k£ clusters and all d features are considered candidates for mutations and flipped with probabilities
pi and pg respectively.

We perform mutations over either clusters or features but never both simultaneously. The intuition
behind this is it is easier to optimize one set of parameters at a time. Consider for example, a favorable
mutation to the feature vector that is matched with an unfavorable mutation to the cluster vector. If
the model’s classification accuracy improves or degrades, it is impossible to isolate the source of
improvement or degradation.

Crossover: We define two crossover methods which operate on ensembles of models. Each ensemble
E contains a collection of N models each [m, ..., my,]. The first crossover method selects a random
integer ¢ between 1 and n. Child 1 inherits a sample of ¢ models from Parent 1 and a sample of the
remaining n — ¢ models from Parent 2. Conversely, Child 2 inherits a sample of ¢ models of Parent 2
and sample of the remaining n — ¢ models from Parent 1. We define a second crossover operation in
which we select ¢ random models in Parent 1 and swap them with ¢ models in Parent 2. This operation
thus requires an additional hyperparameter ¢ representing the number of models to be swapped.

Fitness Function: We borrow an idea from training random forests and define the fitness function
of our algorithm as the out-of-bag (OOB) error. The fitness of a model is defined by the average
accuracy when predicting on clusters the model was not trained on. The fitness of an ensemble is a
voting classifier of all models not trained on a particular cluster.

3.2.2 Evolutionary Out of Distribution Ensembles (Evo-OOD)

Evo-OOD in this section is similar to Evo-NaS with a few key differences. Instead of evolving the
features, layers and nodes in each layer of a NN, we instead evolve the features and the data used to
train the XGB Trees. Additionally, Evo-OOD attempts to optimize OOB error rather than maximize
QD of the resulting ensemble. Evo-OOD begins by initializing a population of models. In each
generation, the fitness of each model in the population is calculated according to it’s OOB error. The
best performing models will be candidates to add to the existing ensemble. Each of these candidates
are temporarily added to the existing ensemble for the purpose of calculating the OOB error of the
ensemble when that candidate is included. After all candidates are tested, the single candidate that
results in the best OOB error of the ensemble is added. Finally, before starting the next generation,
the best models are mutated and replace the worst performing models. Similar to Evo-NaS, a single
model is added to the ensemble each generation. Thus the total ensemble size corresponds to the
number of generations of evolution.

3.2.3 Co-Evolutionary Out of Distribution Ensembles (CoEvo-OOD)

CoEvo-OOD in this section is similar to CoEvo-NaS; several populations are co-evolved and an
ensemble is constructed by selecting one member from each population. Specifically, we first initialize

M distinct populations, each containing N models. Each population, corresponds to a particular
cluster encoding; that is, all the models in a population are trained on the same clusters of data and
only the feature sets are being evolved within the populations. In every generation, the fitness of
all M % N models is first calculated. We next sample one model from each population based on
a temperature scaled softmax of the population fitness vector to form an ensemble. We perform
this sample operation multiple times to construct multiple candidate ensembles and compute their
accuracy metrics. Before beginning the next generation, we mutate the features of the best models in
each population and replace the least fit individuals. Note that we are selecting one model from each
population to be included in the ensemble and which enforces cluster diversity. By incorporating this
domain knowledge that cluster diversity is important we can reduce the search space of evolution to
only search the space of features allowing evolution to operate more efficiently. And, by comparing
CoEvo-0O0D to Evo-OOD we can comment on the extent to which reducing the search space helped
guide evolution to an efficient solution.

4 Experiments

4.1 Real-World Dataset

We consider adult [Becker and Kohavi, [1996] dataset from UCI machine learning repository. We
arbitrarily choose one of the predictor variables and make in-distribution and out-of-distribution sets.
Instances with attribute “workclass” equal to “federal-gov”, “local-gov”, “state-gov” are considered
as out-of-distribution and the rest being in-distribution. The in-distribution dataset is split into training
set, validation in-distribution set, and test in-distribution set following the 80/10/10 splitting ratio. The
out-of-distribution dataset is split into validation out-of-distribution set and test out-of-distribution set

with 50/50 ratio.

4.2 Results

4.2.1 Quality Diversity Approaches

Number of Sparse Experts Nor porion o Diferences bjw expert and Ensemble

Figure 2: Analyzing Model Diversity

We ran Evo-NaS and CoEvo-NaS with a population size of 100 for 100 generations. We allowed
evolution to evolve networks of size at most 5 with at most 250 hidden units in each layer. Networks
were required to use at least one feature; no other restrictions were placed on feature subset choices.
We ran both models setting the number of sparse experts to use in a single prediction to 2, 3, 4 and 5.
The best models for Evo-NaS and CoEvo-OOD are shown in The notation Evo-NaS(l, n, f)
implies mutation is performed on number of layers, number of nodes and feature subset.

We compare our model with three baselines for performance; a logistic regression, an EoA, and
a MoE model with 100 experts, each being a single layer NN with 128 units. The latter of these
baselines is of particular importance as it allows us to analyze the importance diversity in network
structure can have on an MoE model. Our Evo-NaS models seem to consistently outperform the
MOoE baseline, though the differences are very marginal for this dataset. Similarly, EoA seems to
have a slight advantage over our models. While our models have a much higher capacity, the drop in
accuracy on validation and test sets is similar to that of other models. This is an encouraging sign
indicating we are overfitting to the same degree as these other less complex models. [Figure 2h, shows
the Test ID and Test OOD results for Evo-NaS(l,n,f) while varying the number of sparse experts. The
plot indicates little benefit can be obtained by routing examples to more experts, suggesting there is
little diversity in the top-k expert predictions.

While we let Evo-NasS run for the full 100 generations, we additionally saved the model with the best
validation accuracy through each generation. We aggregated all our runs of Evo-NaS and analyzed
the distribution of the size of the ensemble resulting in the best validation accuracy. As shown in
[Figure 2b, in a large number of trials, the best ensemble is found after only a few iterations. This is
yet another indication of a limited benefit from diverse expert predictors.

To further study the diversity of our ensembles, we investigate a single run of Evo-NaS(l, n, f).
We selected the model with the largest ensemble size; this model resulted 71 individual expert
models. We compute the proportion of differences between each expert model’s predictions and the
predictions of the entire ensemble and show the distribution of proportion of differences in[Figure 2k.
We also show the distribution of feature encodings of each of the 71 experts in [Figure 2id. Several
more facts highlight limited benefits achieved from our ensemble’s diversity. First, we realize the
validation accuracy of the ensemble is 85.02% while the validation accuracy of the single best expert
is 84.47%. Second, while there are 2'4 permutations for the featuring encoding vector, the resulting
ensemble contains only 9 of these permutations. Furthermore, most of the ensemble members use
all 14 features. Finally, the proportional of errors distribution is bimodal. This last point is a bit
concerning and potentially indicates mutation often finds models that make really unique errors.
Moreover, our evaluation of fitness prioritizes these extremely novel models which may not be very
accurate. Diversity is good insofar as it improves ensemble accuracy. Furthermore, prioritizing it too
much at the expense of ensemble accuracy could pose some problems.

4.2.2 OOD Approximation Approaches

We next analyze the performance of the two methods that explicitly attempt to optimize OOB fitness.
We ran both models for 50 generations with 10, 30 and 50 kmeans clusters. Additionally for CoEvo-
OOD we set the number of populations to 10, 20 and 30. The cluster encodings in each population
were initialized randomly to be of a certain size (ie. to have a certain number of bits set to 1);
three specific sizes were tested. This design decision was based on analysis that limiting the cluster
encoding size appears to result in an OOB fitness function that relates more strongly to true OOD
accuracy.

We report the best Evo-OOD model in[Table T|and show the learning curve for this model in
We also show a distribution of both the cluster and feature distributions contained in the final ensemble.
We notice an initial spike in accuracy scores that deteriorates as the benefit of adding more predictors
is diminished. Perhaps adding a metric to encourage diversity would delay this deterioration. We
also notice that many of the models rely on a few informative clusters while other clusters are rarely
used. An interesting direction of future work questions why these clusters are seldom selected;
perhaps these are outlier instances and relying on them would corrupt predictions. We notice a similar
pattern in the feature distribution; some features are selected by nearly all models in the ensemble
while others are often overlooked. It would be interesting to relate the feature distribution found by
optimizing our OOB fitness with the principle components of our data and other classical feature
importance metrics in ML. We bookmark this analysis for future work.

EVO-00D fitness Progression EVO-00D: Cluster Distribution EWO-00D: Feature Distribution
086 E

,,-\,/\/\/"-—\/\/_/A/

5]

Freguency
@
[]
—

Accuracy Metric
Frequency

— fitness 2 II II I
078 val_id
— al_ood
o o

o 5 10 15 20 =3 30 35 0 2 4 3 8 o 2 4 3 8 10 12 14
Generation Cluster Index Feature Index

Figure 3: EVO-OOD learning curve and resulting cluster and feature distributions

We report the best CoEvo-OOD model in and show it’s learning curve in|[Figure 4] We ran
CoEvo-OO0D in two scenarios; where each co-evolving population uses a distinct cluster encoding
and where these populations have distinct feature encodings. In the former, evolution operates over

the features and in the latter, cluster encodings are optimized. We call the first case CoEvo-OOD(f)
since only the features are evolving and the second case CoEvo-OOD(c) since only the clusters
are evolving. In both scenarios, the best performing models were found using 10 kmeans clusters.
For CoEvo-OOD(c), the optimal initialization of the fixed feature encodings were found to contain
between 11 and 13 features. For CoEvo-OOD(f), the fixed cluster encodings that gave the best result
used at most half of the clusters. CoEvo-OOD(c) produced higher accuracy’s which might indicate
varying the training data of XGB models has a greater effect on OOB fitness than varying the features.
We also note that all algorithms which optimize for this OOB fitness appear to dominate those that
optimize for QD metrics. We believe this isn’t a function of the models we considered but speaks to
the value of our proposed fitness objective; optimizing this metric results in ensembles more aligned
with true OOD generalization task than optimizing ensembles based on QD metrics.

CoEVO-00D: Populations are unigue features CoEVO-00D: Populations are unique clusters
0.85
0.86
y N MWV\/\/'
i@ @ — fitness .
g g val_acc_id
F o5 £ 084 val_acc_ood
083
070
— fitness
val_acc_id 082
val_acc_ood
065 +— T T T T T T T T T T T y T
o 10 20 30 40 50 o 10 20 30 40 50 (] 70 a0
generation generation

Figure 4: CoEvo-OOD learning curve and resulting cluster and feature distributions

From the learning curves we notice that when features are fixed and the clusters evolving, OOB
fitness is considerably more volatile. This implies changing the trainin data alone can have a large
impact on model performance. Interestingly, when clusters are fixed, model performance is only
marginally affected by selecting alternative feature sets. This is another indication that allocating a
greater number of resources to the evolution training clusters might be beneficial.

We were interested in better understanding the interaction effect between feature and cluster subsets.
Specifically, we hypothesize that given certain clusters, there exists a set of features that optimizes
OOB fitness (and presumably OOD accuracy). And similarly, given fixed features, we believe
there exists a set of clusters that optimize our fitness function. We design a simple experiment to
understand whether these hypothesis’ hold and learn how difficult it is to find these optimal feature
and cluster subsets. Specifically, we initialized three populations of size 50. Two populations had
cluster encodings that differed by only a single bit, and the third population had a cluster encoding
that was markedly different than the first two populations. We evolved only the features of each
population using our mutation operations and OOB fitness function. We additionally design a second
experiment in a similar way except it’s the features that were fixed and the clusters that are being
evolved. shows the results where we fix the features in each population and evolve the
clusters. shows the results where clusters are fixed and features are evolved.

We notice, in each case, the optimal features for a given cluster can be found in just a few generations.
Additionally, similar cluster encodings result in feature subsets distributions that are also similar.
Furthermore, clusters with very different encodings have a very different optimal feature distributions.
We see the same behavior by fixing features and evolving the clusters.

From this study we can draw several conclusions. First there are several local optima of our OOB
fitness. But more importantly, the local optima are close in genetic space. With OOB fitness
displaying some continuity with respect to our genetic encoding, we should be able to optimize it
with genetic operations. Furthermore, the population based search of EAs allow it to explore many
different solutions simultaneously making it more robust to local optima than many other optimization
procedures. For these reasons, we argue EAs are well suited to optimize this OOB fitness metric.

Generation 0: Pop 1 Generation 5: Pop 1 Generation 10: Pop 1 Generation 15: Pop 1

50 - | mm — I -
o e e w|] HEw_ H. | [H nED 0| |Heliles HHE
L MBURHENENE U_HENE Blim BMENE HUE MEUEEE ElINH
P HMUEUEUENE | MEURNENENE HNENENHE BUE | MEUENE ENR
5
210 B B
%3

LHANENENENE | NENENRUENE NN ENENE | NENENE ey

1] 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Cluster index Cluster Index Cluster index Cluster index

Generation 0: Pop 2 Generation 5: Pop 2 Generation 10: Pop 2 Generation 15: Pop 2

7 40
|53
230
£
+ 20
5
]
210
=
0
Cluster Index Cluster Index Cluster Index Cluster Index
Generation 0: Pop 2 Generation 5: Pop 3 Generation 10: Pop 3 Generation 15: Pop 3
3 40
5
230
£
+ 20
2z
ERU)
=
0
Cluster Index Cluster Index Cluster Index Cluster Index
Figure 5: Results from our exploration of OOB fitness when features are fixed
Generation 0: Pop 1 Generation 5: Pop 1 Generation 10: Pop 1 Generation 20: Pop 1
[- | | | . - -
2
]
| erkeluneluln | I [| TN
t o mEN=ElEuERUEN - ml lm]| | (. []]
5
H
&
o 1 1
00 25 50 75 100 125 00 25 50 75 100 125 00 25 50 75 100 125 00 25 50 75 100 125
Feature Index Feature Index Feature Index Feature Index
Generation 0: Pop 2 Generation 5: Pop 2 Generation 10: Pop 2 Generation 20: Pop 2
2w | =il mm | mmm | nmln ull
g I|III IIIlII I|III I III IlIII I I|I
L
£ aleBenasBln.nn | | [["1 n A e n |
E
K]
&
0 1 1
00 25 50 75 100 125 00 25 50 75 100 125 00 25 50 75 100 125 00 25 50 75 100 125
Feature Index Feature Index Feature Index Feature Index
Generation 0: Pop 2 Generation 5: Pop 3 Generation 10: Pop 3 Generation 20: Pop 3
2 40] - l- | — =N - n - ll
g I II I IIII II IIII I II Ill I I I II
L
£ ([T | MO T II.I I II [| | Ny - Il uill | III (| ™ I
5
H
&
0

0.0 2.5 5.0 75 100 125
Feature Index

0.0 2.5 5.0

75 100 125
Feature Index

0.0 2.5 5.0

75 100 125
Feature Index

0.0 2.5 5.0 75 100 125
Feature Index

Figure 6: Results from our exploration of OOB fitness when clusters are fixed

5 Conclusion

We have explored several evolutionary to evolve ensembles specifically for OOD generalization tasks.
Our approaches can be broadly categorized into QD approaches and OOD approximation approaches.
The former attempts to evolve models that are accurate and produce independent errors, while the
latter attempt to optimize a proxy of true OOD accuracy. We find that the OOD approximation
approaches dominate the QD approaches, highlighting the value in our proposed approach of using
OOB error as a proxy for true OOD accuracy. We provided a simple experiment to better understand
this OOB fitness metric and find that while the function contains several local optima, it appears to
be relatively continuous with respect to our genetic encoding. For this reason, we identify EAs as
a viable approach to optimize this fitness function. While many ensemble approaches have been

Classifier Train | Val-ID | Val-OOD
Baseline 1: Logistic Regression | 83.32 | 82.64 77.79
Baseline 2: MoE 84.70 | 84.61 78.28
Baseline 3: EoA 85.65 | 85.55 80.66
Evo-NaS(l, n, f) 86.44 | 85.57 79.84
Evo-NaS(, n) 87.16 | 85.50 79.44
CoEvo-NaS(, n, f) 8425 | 84.18 78.03
CoEvo-NaS (1, n) 84.10 | 83.73 77.91
Evo-OOD 85.70 | 86.81 83.66
CoEvo-OO0D(f) 85.76 | 86.42 83.35
CoEvo-O0D(c) 85.85 | 87.22 84.06

Table 1: Accuracy Comparison on Adult Dataset

attempted for OOD generalization, to the best of our knowledge, this is the first work that applies
EAs to evolve ensembles explicitly for OOD problems. We hope our work encourages more research
into EAs to construct ensembles for OOD generalization.

References

Ulf Johansson, Tuve Lofstrom, and Lars Niklasson. The importance of diversity in neural network
ensembles - an empirical investigation. In 2007 International Joint Conference on Neural Networks,
pages 661-666, 2007. doi: 10.1109/IJCNN.2007.4371035.

Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. Quality diversity: A new frontier for evolu-
tionary computation. Frontiers Robotics Al, 3:40, 2016. URL https://api.semanticscholar,
org/CorpusID:21713708|

Yugqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey
on evolutionary neural architecture search. IEEE transactions on neural networks and learning
systems, 34(2):550-570, 2021.

Ashraf Darwish, Aboul Ella Hassanien, and Swagatam Das. A survey of swarm and evolutionary
computing approaches for deep learning. Artificial intelligence review, 53(3):1767-1812, 2020.

Haoyue Bai, Fengwei Zhou, Lanqing Hong, Nanyang Ye, S-H Gary Chan, and Zhenguo Li. Nas-ood:
Neural architecture search for out-of-distribution generalization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8320-8329, 2021.

Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improving
model selection and boosting performance in domain generalization. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=peZSbfNnBp4.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representations, 2017. URL https://openreview,
net/forum?id=BilckMDqlg.

Tianqgi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
16. ACM, August 2016. doi: 10.1145/2939672.2939785. URL http://dx.doi.org/10.1145/
2939672.2939785.

Yufan Liao, Qi Wu, and Xing Yan. Decorr: Environment partitioning for invariant learning and ood
generalization, 2022.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

https://api.semanticscholar.org/CorpusID:21713708
https://api.semanticscholar.org/CorpusID:21713708
https://openreview.net/forum?id=peZSbfNnBp4
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785

	Introduction
	Related Work
	Neural Architecture Search
	NAS-OOD
	Ensemble of Averages (EoA)
	Sparsely-Gated Mixture of Experts

	Methods
	Quality Diversity Approaches
	Genetic Encoding and Operators
	Evolutionary NaS OOD Ensembles (Evo-NaS)
	Co-Evolutionary NaS OOD Ensembles (CoEvo-NaS)

	OOD Approximation Approaches
	Genetic Encoding and Operations
	Evolutionary Out of Distribution Ensembles (Evo-OOD)
	Co-Evolutionary Out of Distribution Ensembles (CoEvo-OOD)

	Experiments
	Real-World Dataset
	Results
	Quality Diversity Approaches
	OOD Approximation Approaches

	Conclusion

