Deep Q-Learning

Scott Merrill
Georgia Institute of Technology
smerrill7@gatech.edu
git hash: c0c8e87e687b36d5610c91c064fe715cf76fe7el

I. INTRODUCTION

By rewarding desired behaviors and penalizing unwanted
actions, Reinforcement Learning applies concepts from
classical conditioning to train agents to optimally navigate an
environment. In 1992, Chris Watkins presented the proof of
convergence of a technique known as Q-Learning whereby
agents can be conditioned to identify and exploit the series of
actions that maximizes their cumulative reward [2]. Such
techniques, however, require finite state spaces and thus are
applicable only to select domains. Deep Q-Learning is an
extension of the original Q-Learning algorithm that is scalable
to infinite state-space environments. While Deep-Q Learning
algorithms aren’t guaranteed to converge, several strategies can
be implemented to make convergence more likely [1].

In this paper we demonstrate the training of a Deep Q-
Network to teach a virtual agent to solve OpenAl Gym’s
LunarLander-v2 environment. We demonstrate the use of
experience replay, fixed Q-Targets and € —greedy exploration
which help support convergence and additionally explore how
hyperparameters can be tuned to enable efficient learning. This
work serves to demonstrate the efficiency of properly
parameterized Deep Q-Networks and highlight the broadened
class of infinite state space problems they can solve.

II. Q-LEARNING

A. Reinforcment Learning

Reinforcement Learning problems model the environment
as a Markov Decision Process (MDP), where at any time ¢, an
agent is in some state s, and can chose from a set of actions a.
Based on the selected action, the environment then returns the
resulting reward and new state from selecting this action. This
basic reinforcement learning framework is shown in Figure 1.

> Agent
state reward action
S R, A
R (
_S. | Environment]47

Figure 1

The goal of the agent is to select the set of actions that yield
the highest cumulative reward. The underlying properties of
the MDP may be known or unknown. If the underlying
transition probabilities and reward for each state are known,
then it is considered a model-based system and can be solved
through planning. However, a model for the environment is
rarely known in advance, and oftentimes the agent must learn
to maximize reward through trial and error. In these cases, the
Reinforcement Learning framework is said to be model-free,
which is the focus of this paper.

B. Algorithim

The Q-Learning algorithm is a model-free strategy to
identify the optimal policy of an agent. To illustrate the
algorithm, consider an unknown environment with state space
S and action space A. Let the Q-Function, Q*(s, a), be the
state-action value function that provides the value of being in a
particular state s and taking a particular action a. Since the goal
of the agent is to identify the policy 7*(s) that selects the action
resulting in the largest cumulative reward, the policy is related
to the Q-Function by (1).

(s) = argmax,Q(s,a) (1)

Since a model of the environment is unknown, the agent
must approximate the optimal Q-Function through trial and
error. To estimate this state-action value function, Q(s,a) is
initialized to arbitrary random values and updated with each
transition (S¢, g, 13, S¢+1), Where s; is the starting state, 7 is
the reward received for taking action a; and s;,; is the
resulting state after taking action a;. At each time-step, the
current values of Q(s, a) are updated toward the Q-Target — an
approximation of the optimal Q-Function defined in (2).

Q(sp,a) =re +y max Q(St4+1,Ar41) (2)

In (2), y is a discount factor used to normalize rewards received
in the distant future. Intuitively, the value of any state action
pair is the reward for taking some action a; and the discounted
value of being in a new state s;, ;. A learning rate parameter a
determines the amount with which the Q-Function is updated
towards the Q-Target. The complete learning rule is thus
presented in (3).

Q(spar) = Q(spar) +afry +y mgx Q(st+1,atr1) (3)
— Q(spa)]

mailto:smerrill7@gatech.edu

With repeated application of this update rule and adequate
exploration of the state space, it has been shown that Q (s, a;)
converges to Q*(s;, a;) with probability 1 [2].

I1I. DEEP Q-LEARNING

While Q-Learning provides a very simple framework and
update rule, its limitations become clear as state and action
spaces grow large. The Q-Learning algorithm described above
is considered tabular since it requires a lookup table to store the
values of each state-action pair. In continuous state spaces, a
lookup table becomes unfeasible and approximation methods
are necessary to generalize similar state spaces. In this paper
we consider Deep Q-Networks (DQN) which use Artificial
Neural Networks (ANN) to approximate the Q-Function
enabling Q-Learning techniques in infinite state space models.

A. Feed Forward Artificial Neural Network

ANN are a supervised learning technique based loosely on
the human brain. Feed Forward Networks (FFN) are the
simplest form of ANN in which information moves in a single
direction through multiple layers of neurons to produce
predictions. FFN consist of an input layer, optional hidden
layers and an output layer. Information is passed sequentially
as shown in Figure 2, such that a neuron in layer i+1 is the
weighted sum of all neurons in layer i.

Figure 2

To illustrate this, let x; denote the first neuron in the input
layer, and a; to denote the first neuron in the hidden layer.
Additionally, let wi(jl) be the weight vector connecting the input
layer to the hidden layer, such that element ij in the vector
corresponds to weight connecting it neuron in the input layer
to the jin neuron in the hidden layer. Thus, x; affects every
neuron in the hidden layer proportional to the weight Wl(}). Or,

equivalently stated, neuron a,, is affected by all neurons in the

(D

input layer by the corresponding weight w;;

as shown in (4).

connecting them

a; = xq * WS) + X, * wz(i) + X3 * Wg(i) 4)

Some representations of FNN use activation functions to
further frame the value of each neuron. A simple activation
function is the rectified linear (relu) function defined as f(x) =
max (0,x). The calculation of a; using the relu activation
function is shown in (5).

(@Y)

a, = max (0. xXq * W(lll) + Xy * W(211) + X3 * W31) (5)

The values of each neuron are calculated sequentially in this
manner to produce the predictions in the output layer. The
weights of a feed forward network are trained on labeled data
as to minimize a loss function.

B. FFN Q-Function Approximator

In the context of Q-Learning, a FFN Q-Function
approximator Q(s;, a; 8;) with weights 6; is trained by
adjusting the weights at each iteration i to minimize loss
between the optimal Q-Function. Since the optimal Q-Function
is unknown, it is modeled by a second FFN with weights 6; .
The Q-Target 1is thus approximated by y =1+
y max Q(Siz1,ai41 0;) . Stochastic gradient descent is then

performed to adjust the weights 8; to minimize the mean
squared-error between the Q-Function and the Q-Target.

2
Li(6) = (Ti +ymax Q(sity, Girs 07) — Qsiy @ 91‘)) (6)

C. Stability Issues

It is known, however, that when non-linear function
approximators such as FFN are used to estimate the Q* (s, a),
convergence is not guaranteed because of the correlation
between consecutive (S;, a;, 7y, Sp41) transitions and the
correlation between Q(s;, a; 6;) and the update target r; +
y max Q(Sis1,ai41 07) [1]. Two techniques are employed to

reduce these correlations.

To address the correlation between consecutive transitions,
a technique known as experience replay can be used to train a
FFN. Experience replay refers to the storage of (s;, as, 1¢, Se41)
transitions for later use. When training a FFN, random samples
from replay memory are used thus reducing the correlation
between training samples and the risk of diverging solutions.

Additionally, fixed Q-Targets are used to address the
correlation between the Q-Function and the Q-Target. With
fixed Q-Targets, two representations of the FFN are stored; one
with weights 6; and one with the target weights 6; . After C
gradient decent updates, the target weights are reset to the

current Q-Function weights. Thus, the Q-Learning update rule
bootstraps the Q-Function toward a frozen representation of
itself. This technique limits the correlation between the Q-
Function approximate and the Q-Target and prevents the
unstable situation in which updating the weights will change
both the Q-Function and the Q-Target.

IV. LUNAR LANDING PROBLEM

A. Description

We now demonstrate an application of a DQN to solve
OpenAl Gym’s LunarLander-v2 environment. The goal of the
environment is to teach a lunar lander to successfully land on
randomly generated surfaces of the moon. The state space S 3
(x,y.%,9,6,0,leg,, legg) includes 6 continuous variables and
two binary flags. The variables x, y correspond to the agent’s
vertical and horizontal position; X and y indicate vertical and
horizontal velocity while 6 and 0 provide the agent’s angular
position and velocity. The binary leg; and legy flags indicate
whether the agent’s legs are in contact with the moon. Given
any state, the agent can choose from four actions; firing the
main engine, firing the left engine, firing the right engine or
turning the engines off.

The agent is continuously rewarded up to a maximum of
140 points as it moves closer to the landing pad. Any move
away from the landing pad will result in an equivalent negative
reward. In addition, the agent is rewarded 100 points for a
successful landing and deducted 100 points for crashing. For
each leg that finishes in contact with the moon, the agent is
rewarded 10 points. Finally, the agent is penalized 0.3 points
for each fire of the main engine and 0.03 for each fire on the
left or right engines. The problem is considered solved when a
score of 200 points or higher is achieved on 100 consecutive
episodes.

B. Deep Q-Learning Implementations

To solve this problem, we implemented a DQN consisting
of two hidden layers and a linear output activation function.
The first and second hidden layers consisted of 1000 and 250
nodes respectively each with relu activation functions. A
learning rate of 0.00025 was selected with Adam’s adaptive
learning rate optimization to minimize the mean squared error
loss function. The network was trained with 100 random
samples drawn from replay memory at each iteration. The
weights of the Q-Target FFN were reset to the weights of the
Q-Function’s FFN after 25 iterations.

Our agent learned off policy following an € — greedy
exploration strategy in which it would act randomly € percent
of the time and act greedily 1 — € percent of the time. € was
initially set to 1.0 such that our agent would act randomly
100%. With each iteration, the value was decayed by a factor
of 0.999 subject to a minimum value of 0.01. Complete
pseudocode is shown in Algorithm 1.

Initialize replay memory of size N
Initialize Q-Function Approximator with weights 6;
Initialize Q-Target with weights 6;

For each episode:
Initialize s; to starting state
For each transition:
Select a random action with probability €, otherwise select
argmax,Q (s, a;)
Observe new reward r; and state s;,
Store the transition (s;, a;, 13, S;+1) in replay memory
Randomly sample N observations from replay memory

T if episode terminates
Set Q-Target: ¥i =11 4 y max Q(si41, Aise, 6;) otherwise
a

Perform gradient descent on (yl- —-Q(s;, a;, 9,-))2
Anneal € by decay factor
After C steps set 8; = 6;
End For
End For

The results for our model with these parameters are shown
in Figure 3. Overall, these agents perform quite well, solving
the problem and converging to the optimal solution in 155
training episodes.

DQN Agent Performance LunarLanderVv2

200 -
o
—
£
[01
4
]
=
E —200
=}
£
5 —400
(]
-600
0 200 400 600 800 1000
Episodes
—— Reward 100-Episode Moving Average Reward

Figure 3

V. EXPERIMENTS AND HYPERPARAMETER TUNING

The performance of our DQN was proven to be highly
sensitive to the input parameters. Thus, several experiments
were run to determine the optimal hyperparameters.

A. Optimizing Neural Network

Our first experiment attempted to optimize the overall
configuration of our FFN. In total 24 different configurations
were tested. We considered a network with an input layer,
two hidden layers and one output layer. The number of

hidden layers was chosen strategically to allow for the
modeling of complex boundaries while also avoiding
overfitting. While each hidden layer used the relu activation
function, 4 different activation functions were considered on
the output layer; linear, relu, sigmoid and tanh.

While the linear activation function doesn’t bound the
output value, the relu, sigmoid and tanh are all bounded. The
relu function prevents negative values, the sigmoid function
bounds the output to between 0 and 1 and the tanh is defined
from -1 to 1. Each output activation has its theoretical
advantages, but the linear function was the only one that
produced consistent convergence. The results for the linear
activation function on several network sizes are shown in
Figure 4. Surprisingly, the relu activation function converged
and performed quite well for only one network with hidden
layers of size 400/200.

Linear Output Activation Function

el
3 200
=
]
« — 75/50
< 100 100/50
© —— 100/100
Z b —— 200/100
£ —— 200/200
3 —— 400/200
o -100 500/250
g ~—— 1000/250
@
Z 200
200 400 600 800 1000
Episodes
Figure 4

Since our FFN is modeling a Q-Function which can take
an infinite number of possible values, the linear function does
make the most sense. Furthermore, since the scale of the
reward ranges from -100 to 100, bounding the Q-Function
between -1 and 1 results in the immediate reward dominating
the update rule in (6). Thus, with the sigmoid and tanh output
activation functions decisions are made largely on maximizing
one step reward rather than maximizing cumulative reward.
The reward would need to be scaled if either of these
activation functions are to be reconsidered in the future.

Bounding created similar issues for the relu activation
function. By setting the minimum Q-Function output to zero,
states that are considered extremely bad and only moderately
bad are not differentiable. Since all bad states are treated the
same, extremely bad states aren’t actively avoided leading to
sub-optimal decisions. Overall, in the context of the problem,
the linear activation function makes the most sense to model
the Q-Function and empirical results support this fact.

B. Adaptive Learning Rates

Our second experiment was conducted to find the optimal
learning rate parameter for our given network. 7 different
learning rates were considered as well as well as 3 different
adaptive learning rate algorithms; RMSProp, AdaGrad, and
the Adam optimizers. Each of the adaptive learning rate

algorithms dynamically adjust the learning rate for each
weight parameter in the network. AdaGrad sets larger
learning rates to parameters that are updated more
infrequently, RMSProp updates learning rates based on
magnitudes of recent changes to network weights and the
Adam’s optimizer updates learning rates based on recent
magnitudes and variances of weight updates.

Learning Rates with Adam’s Optimizer

200

0.0003
0.0005
0.00015
0.000075
0.001
0.00025

100

1]

-100 1

Average Cummulative Reward

—200 -

200 400 600 800 1000
Episodes

Figure 5

The best overall results were achieved using the Adam’s
optimizer, however the RMSProp algorithm performed well
for select initial learning rates. The AdaGrad algorithm failed
to converge for every learning rate tested. We believe this is
partly due to the overwhelming size of the network. With two
hidden layers of size 1000 and 250, there are a total of
260,254 tunable weights. Given the size of the network, it’s
likely the case that every weight is updated each time the
network is trained; changing one weight will likely create a
chain reaction of updates to other weights in the network.
And, since AdaGrad adaptively decreases the learning rate for
parameters that are updated frequently, such will result in
deflated learning rates and slow convergence.

The RMSProp and Adam’s optimizer don’t face the same
problem as AdaGrad. These algorithms update the learning
rate based on the average change and average volatility of
each particular weight. Moreover, when a particular weight
begins to converge on some value, learning rates will
automatically decay. Lowering the learning rates as
parameters converge is the ideal behavior. In gradient
descent, there’s the inherent tradeoff between convergence
speed and the optimality of the solution; the higher the
learning rate, the quicker the learning but also the potential to
overshoot the global minimum. The lower the learning rate,
the slower the convergence but the more likely we are to find
the global minimum.

C. Loss Function

Our third experiment considered three loss functions; the
mean-squared error (MSE), mean absolute error (MAE) and
mean squared logarithmic error (MSLE). The results for each
loss function are shown in the Figure 6. Both the MAE and
MSE performed quite well. The MAE found the optimal

reward quicker, however it is not monotonic, nor did it
converge over 1000 episodes.

Loss Function

250 o

200

150

— MSE

100 MAE

Average Cummulative Reward
8

200 400 600 800 1000
Episodes

Figure 6

Mathematically, the MSE and MAE are quite similar.
Unlike the MAE, the MSE squares the difference between the
predicted output and actual output making it more sensitive to
outliers which may explain the initial outperformance of the
MAE. However, the major issue with the MAE was its lack of
convergence. After careful investigation, this can be
explained by looking at the gradient of MAE. Being a
piecewise function, the gradient of the MAE is constant, and
thus the same for small and large losses. Ideally, larger
gradients for large losses and smaller gradients for smaller
losses are preferred. This constant gradient prevents the MAE
from converging even with adaptive learning rates. Unlike
MAE, the MSE is parabolic and thus operates efficiently with
smaller gradient updates for smaller losses.

The MSLE is akin to MSE, however it is concerned with
percentage error in estimations. The MSLE was the worst
performing loss function which is likely due to the bounded
nature of the formula preventing extremely large losses. The
MSLE also suffers the same gradient issues as the MAE.
Being a logrithmic function, large and small errors are treated
approximately the same.

D. Epsilon Decay Speed

Our fourth experiment tested the decay speed of €. As our
implementation is an e-greedy off policy DQN, the value €
determines how often our agent acts randomly and how often
it acts greedily exploiting the best policy. € was initialized to
1.0 and decayed by the decay factor after each transition. In
general, higher decay factors outperformed lower ones as
shown in Figure 7. However, extremely high decay factors
such as 0.999999 performed the worst. This makes sense as
with such a high decay factor our agent is selecting most
actions at random for thousands of episodes. Considering
there are on average 100 transitions in an episode, after 1000
episodes with a decay speed of 0.999999 our agent is acting
randomly 90% of the time (0.999999100*1000) ' The optimal
decay speed and that which was used in the final model was
found to be 0.999, indicating that after 20 episodes, the agent
is acting greedily roughly 86% of the time (0.999100*20),

— MSLE

Epsilon Decay Factor

0.9999
0999
0.9975
0.995
0.9925
099
0.9875
— 0985
0.9825

|11

Average Cummulative Reward

200 200 600 800 1000
Episodes
Figure 7

E. Discount Factor Selection

Our final experiment considered 14 discount rates. The
results for this experiment are shown in Figure 8. The
discount factor producing the quickest convergence was found
to be 0.995. Interestingly, any discount factor higher than this
prevented convergence. Such high gamma values encouraged
the lander to land as quickly as possible instead of taking an
infinite stream of slightly negative rewards. The priority with
which the agent placed on landing quickly prevented it from
ever properly landing and converging on a solution. In the
other extreme, discount rates below 0.98 resulted in the lander
taking its time to land. With many failed attempts at landing
and receiving a -100 reward, the agent decided the optimal
decision was to remain in the air indefinitely and accepting a
reward of -0.3; this makes sense as the value of remaining
ascent is an increasing function of the discount rate.

Discount Factor

— 099
098

—— 09925

— 0995

Average Cummulative Reward

260 460 660 B(;O 10'00
Episodes

Figure 8

VI. CONCLUSION

Solving Al Gym’s LunarLander-v2 with a DQN proves
the usefulness of FFN approximators for the Q-Function.
Additionally, strategies such as experience replay, and Q-
Target fixing are useful in aiding the convergence of non-
linear Q-Function approximators. While basic parameter
tuning of the DQN was enough to solve the LunarLander-v2
environment, more complex problems may require more
sophisticated tuning. Thus, more efficient strategies to train
parameters simultaneously remains to be investigated.

REFERENCES

[11 Mnih, Volodymyr, "Playing atari with deep reinforcement
learning." (2013)

[2] Watkins and Dayan, “Q-Learning.” (1992)

	I. Introduction
	II. Q-Learning
	A. Reinforcment Learning
	B. Algorithim

	III. Deep Q-Learning
	A. Feed Forward Artificial Neural Network
	B. FFN Q-Function Approximator
	C. Stability Issues

	IV. Lunar Landing Problem
	A. Description
	B. Deep Q-Learning Implementations

	V. Experiments and hyperparameter tuning
	A. Optimizing Neural Network
	B. Adaptive Learning Rates
	C. Loss Function
	D. Epsilon Decay Speed
	E. Discount Factor Selection

	VI. Conclusion
	References

