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I. INTRODUCTION 
By rewarding desired behaviors and penalizing unwanted 

actions, Reinforcement Learning applies concepts from 
classical conditioning to train agents to optimally navigate an 
environment.  In 1992, Chris Watkins presented the proof of 
convergence of a technique known as Q-Learning whereby 
agents can be conditioned to identify and exploit the series of 
actions that maximizes their cumulative reward [2].  Such 
techniques, however, require finite state spaces and thus are 
applicable only to select domains.  Deep Q-Learning is an 
extension of the original Q-Learning algorithm that is scalable 
to infinite state-space environments.  While Deep-Q Learning 
algRUiWhmV aUeQ¶W gXaUaQWeed to converge, several strategies can 
be implemented to make convergence more likely [1].  

In this paper we demonstrate the training of a Deep Q-
Network to teach a virtual agent to VRlYe OSeQAI G\m¶V 
LunarLander-v2 environment.  We demonstrate the use of 
experience replay, fixed Q-Targets and 𝜖 −greedy exploration 
which help support convergence and additionally explore how 
hyperparameters can be tuned to enable efficient learning.  This 
work serves to demonstrate the efficiency of properly 
parameterized Deep Q-Networks and highlight the broadened 
class of infinite state space problems they can solve.   

 

II. Q-LEARNING 

A. Reinforcment Learning 
Reinforcement Learning problems model the environment 

as a Markov Decision Process (MDP), where at any time t, an 
agent is in some state s, and can chose from a set of actions a.  
Based on the selected action, the environment then returns the 
resulting reward and new state from selecting this action.  This 
basic reinforcement learning framework is shown in Figure 1. 

 

 
Figure 1 

The goal of the agent is to select the set of actions that yield 
the highest cumulative reward.  The underlying properties of 
the MDP may be known or unknown.  If the underlying 
transition probabilities and reward for each state are known, 
then it is considered a model-based system and can be solved 
through planning.  However, a model for the environment is 
rarely known in advance, and oftentimes the agent must learn 
to maximize reward through trial and error.  In these cases, the 
Reinforcement Learning framework is said to be model-free, 
which is the focus of this paper.  

 

B. Algorithim 
The Q-Learning algorithm is a model-free strategy to 

identify the optimal policy of an agent.  To illustrate the 
algorithm, consider an unknown environment with state space 
S and action space A.  Let the Q-Function, 𝑄∗ሺ𝑠, 𝑎ሻ, be the 
state-action value function that provides the value of being in a 
particular state s and taking a particular action a.  Since the goal 
of the agent is to identify the policy 𝜋∗ሺ𝑠ሻ that selects the action 
resulting in the largest cumulative reward, the policy is related 
to the Q-Function by (1).   
 

𝜋∗ሺ𝑠ሻ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄∗ሺ𝑠, 𝑎ሻ 
 

Since a model of the environment is unknown, the agent 
must approximate the optimal Q-Function through trial and 
error.  To estimate this state-action value function, 𝑄ሺ𝑠, 𝑎ሻ is 
initialized to arbitrary random values and updated with each 
transition ሺ𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1ሻ, where 𝑠𝑡  is the starting state, 𝑟𝑡  is 
the reward received for taking action 𝑎𝑡  and 𝑠𝑡+1  is the 
resulting state after taking action 𝑎𝑡 .  At each time-step, the 
current values of 𝑄ሺ𝑠, 𝑎ሻ are updated toward the Q-Target ± an 
approximation of the optimal Q-Function defined in (2). 
 

𝑄ሺ𝑠𝑡, 𝑎𝑡ሻ = 𝑟𝑡 + 𝛾 max
𝑎

𝑄ሺ𝑠𝑡+1, 𝑎𝑡+1ሻ 

 
In (2), 𝛾 is a discount factor used to normalize rewards received 
in the distant future.   Intuitively, the value of any state action 
pair is the reward for taking some action 𝑎𝑡 and the discounted 
value of being in a new state 𝑠𝑡+1.  A learning rate parameter 𝛼 
determines the amount with which the Q-Function is updated 
towards the Q-Target.  The complete learning rule is thus 
presented in (3). 
 

𝑄ሺ𝑠𝑡, 𝑎𝑡ሻ = 𝑄ሺ𝑠𝑡, 𝑎𝑡ሻ + 𝛼ሾ𝑟𝑡 + 𝛾 max
𝑎

𝑄ሺ𝑠𝑡+1, 𝑎𝑡+1ሻ
−  𝑄ሺ𝑠𝑡, 𝑎𝑡ሻሿ 

(1) 

(2) 

(3) 
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With repeated application of this update rule and adequate 
exploration of the state space, it has been shown that 𝑄ሺ𝑠𝑡, 𝑎𝑡ሻ 
converges to 𝑄∗ሺ𝑠𝑡, 𝑎𝑡ሻ with probability 1 [2]. 
 

III. DEEP Q-LEARNING 
While Q-Learning provides a very simple framework and 

update rule, its limitations become clear as state and action 
spaces grow large.  The Q-Learning algorithm described above 
is considered tabular since it requires a lookup table to store the 
values of each state-action pair.  In continuous state spaces, a 
lookup table becomes unfeasible and approximation methods 
are necessary to generalize similar state spaces.  In this paper 
we consider Deep Q-Networks (DQN) which use Artificial 
Neural Networks (ANN) to approximate the Q-Function 
enabling Q-Learning techniques in infinite state space models.   
 

A. Feed Forward Artificial Neural Network 
 ANN are a supervised learning technique based loosely on 
the human brain.  Feed Forward Networks (FFN) are the 
simplest form of ANN in which information moves in a single 
direction through multiple layers of neurons to produce 
predictions.  FFN consist of an input layer, optional hidden 
layers and an output layer.  Information is passed sequentially 
as shown in Figure 2, such that a neuron in layer i+1 is the 
weighted sum of all neurons in layer i.  

 
Figure 2 

To illustrate this, let 𝑥1 denote the first neuron in the input 
layer, and 𝑎1  to denote the first neuron in the hidden layer.  
Additionally, let 𝑤𝑖௝

ሺ1ሻ be the weight vector connecting the input 
layer to the hidden layer, such that element ij in the vector 
corresponds to weight connecting ith neuron in the input layer 
to the jth neuron in the hidden layer.  Thus, x1 affects every 
neuron in the hidden layer proportional to the weight 𝑤1௝

ሺ1ሻ.  Or, 
equivalently stated, neuron 𝑎1, is affected by all neurons in the 
input layer by the corresponding weight w୧1

ሺ1ሻ connecting them 
as shown in (4). 

 

𝑎1 = 𝑥1 ∗ 𝑤11
ሺ1ሻ + 𝑥2 ∗ 𝑤21

ሺ1ሻ + 𝑥3 ∗ 𝑤31
ሺ1ሻ 

 
Some representations  of FNN use activation functions to 

further frame the value of each neuron.  A simple activation 
function is the rectified linear (relu) function defined as 𝑓ሺ𝑥ሻ =
max ሺ0, 𝑥ሻ .  The calculation of 𝑎1  using the relu activation 
function is shown in (5). 
 

𝑎1 = max ቀ0, , , 𝑥1 ∗ 𝑤11
ሺ1ሻ + 𝑥2 ∗ 𝑤21

ሺ1ሻ + 𝑥3 ∗ 𝑤31
ሺ1ሻቁ 

 
The values of each neuron are calculated sequentially in this 
manner to produce the predictions in the output layer.  The 
weights of a feed forward network are trained on labeled data 
as to minimize a loss function.   

 

B. FFN Q-Function Approximator 
In the context of Q-Learning, a FFN Q-Function 

approximator 𝑄ሺ𝑠𝑡, 𝑎𝑡 𝜃𝑖ሻ with weights 𝜃𝑖  is trained by 
adjusting the weights at each iteration i to minimize loss 
between the optimal Q-Function.  Since the optimal Q-Function 
is unknown, it is modeled by a second FFN with weights 𝜃𝑖

−.  
The Q-Target is thus approximated by 𝑦 = 𝑟𝑖 +
𝛾 max

𝑎
𝑄ሺ𝑠𝑖+1, 𝑎𝑖+1 𝜃𝑖

−ሻ . Stochastic gradient descent is then 
performed to adjust the weights 𝜃𝑖  to minimize the mean 
squared-error between the Q-Function and the Q-Target. 

 

𝐿𝑖ሺ𝜃𝑖ሻ = ቆ 𝑟𝑖 + 𝛾 max
𝑎

𝑄ሺ𝑠𝑖+1, 𝑎𝑖+1 𝜃𝑖
−ሻ − 𝑄ሺ𝑠𝑖, 𝑎𝑖 𝜃𝑖ሻቇ

2

 

 

C. Stability Issues 
It is known, however, that when non-linear function 

approximators such as FFN are used to estimate the 𝑄∗ሺ𝑠, 𝑎ሻ, 
convergence is not guaranteed because of the correlation 
between consecutive ሺ𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1ሻ transitions  and the 
correlation between 𝑄ሺ𝑠𝑖, 𝑎𝑖 𝜃𝑖ሻ  and the update target 𝑟𝑖 +
𝛾 max

𝑎
𝑄ሺ𝑠𝑖+1, 𝑎𝑖+1 𝜃𝑖

−ሻ [1].  Two techniques are employed to 
reduce these correlations. 

To address the correlation between consecutive transitions, 
a technique known as experience replay can be used to train a 
FFN.  Experience replay refers to the storage of ሺ𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑆𝑡+1ሻ 
transitions for later use.  When training a FFN, random samples 
from replay memory are used thus reducing the correlation 
between training samples and the risk of diverging solutions. 

Additionally, fixed Q-Targets are used to address the 
correlation between the Q-Function and the Q-Target.  With 
fixed Q-Targets, two representations of the FFN are stored; one 
with weights 𝜃𝑖 and one with the target weights 𝜃𝑖

−.  After C 
gradient decent updates, the target weights are reset to the 

(4) 

(5) 

(6) 



current Q-Function weights.  Thus, the Q-Learning update rule 
bootstraps the Q-Function toward a frozen representation of 
itself.  This technique limits the correlation between the Q-
Function approximate and the Q-Target and prevents the 
unstable situation in which updating the weights will change 
both the Q-Function and the Q-Target.  

 

IV. LUNAR LANDING PROBLEM 

A. Description 
We now demonstrate an application of a DQN to solve 

OSeQAI G\m¶V LXQaULaQdeU-v2 environment.  The goal of the 
environment is to teach a lunar lander to successfully land on 
randomly generated surfaces of the moon.  The state space 𝑆 ∋
൫𝑥, 𝑦, xሶ , yሶ , 𝜃, θሶ , 𝑙𝑒𝑔𝐿, 𝑙𝑒𝑔ோ൯ includes 6 continuous variables and 
two binary flags.  The variables 𝑥, 𝑦 correspond to the agent¶s 
vertical and horizontal position; xሶ  and yሶ  indicate vertical and 
horizontal velocity while 𝜃 𝑎𝑛𝑑 θሶ  SURYide Whe ageQW¶V aQgXlaU 
position and velocity.  The binary 𝑙𝑒𝑔𝐿 and 𝑙𝑒𝑔ோ flags indicate 
ZheWheU Whe ageQW¶V legV aUe iQ cRQWacW Zith the moon.  Given 
any state, the agent can choose from four actions; firing the 
main engine, firing the left engine, firing the right engine or 
turning the engines off. 

The agent is continuously rewarded up to a maximum of 
140 points as it moves closer to the landing pad.  Any move 
away from the landing pad will result in an equivalent negative 
reward.  In addition, the agent is rewarded 100 points for a 
successful landing and deducted 100 points for crashing.  For 
each leg that finishes in contact with the moon, the agent is 
rewarded 10 points.  Finally, the agent is penalized 0.3 points 
for each fire of the main engine and 0.03 for each fire on the 
left or right engines.  The problem is considered solved when a 
score of 200 points or higher is achieved on 100 consecutive 
episodes.  
 

B. Deep Q-Learning Implementations 
To solve this problem, we implemented a DQN consisting 

of two hidden layers and a linear output activation function.  
The first and second hidden layers consisted of 1000 and 250 
nodes respectively each with relu activation functions.  A 
learning rate of 0.00025 was selected wiWh Adam¶V adaSWiYe 
learning rate optimization to minimize the mean squared error 
loss function.  The network was trained with 100 random 
samples drawn from replay memory at each iteration.  The 
weights of the Q-Target FFN were reset to the weights of the 
Q-FXQcWiRQ¶V FFN after 25 iterations. 

Our agent learned off policy following an 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 
exploration strategy in which it would act randomly 𝜖 percent 
of the time and act greedily 1 −  𝜖 percent of the time.  𝜖 was 
initially set to 1.0 such that our agent would act randomly 
100%.  With each iteration, the value was decayed by a factor 
of 0.999 subject to a minimum value of 0.01.  Complete 
pseudocode is shown in Algorithm 1.  

 
The results for our model with these parameters are shown 

in Figure 3.  Overall, these agents perform quite well, solving 
the problem and converging to the optimal solution in 155 
training episodes.   

 

 
Figure 3 

 

V. EXPERIMENTS AND HYPERPARAMETER TUNING 
The performance of our DQN was proven to be highly 

sensitive to the input parameters.  Thus, several experiments 
were run to determine the optimal hyperparameters.  

A. Optimizing Neural Network 
Our first experiment attempted to optimize the overall 

configuration of our FFN.  In total 24 different configurations 
were tested.  We considered a network with an input layer, 
two hidden layers and one output layer.  The number of 

Algorithm 1: 𝝐-greedy Deep Q-Learning  
Initialize replay memory of size N 
Initialize Q-Function Approximator with weights 𝜃𝑖 
Initialize Q-Target with weights 𝜃𝑖

− 
 
For each episode: 
    Initialize 𝑠𝑖 to starting state 
    For each transition: 
        Select a random action with probability 𝜖, otherwise  select 
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄ሺ𝑠𝑖, 𝑎𝑖ሻ 
        Observe new reward 𝑟𝑖 and state 𝑠𝑖+1 
        Store the transition ሺ𝑠𝑖, 𝑎𝑖, 𝑟𝑖 , 𝑠𝑖+1ሻ in replay memory 
        Randomly sample N observations from replay memory 
 

Set Q-Target: 𝑦𝑖 = ቊ
𝑟𝑖                            𝑖𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠
𝑟𝑖 + 𝛾 max

𝑎
𝑄ሺ𝑠𝑖+1, 𝑎𝑖+1, 𝜃𝑖

−ሻ  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

        Perform gradient descent on ൫𝑦𝑖 − 𝑄ሺ𝑠𝑖, 𝑎𝑖, 𝜃𝑖ሻ൯2 
        Anneal 𝜖 by decay factor 
        After C steps set 𝜃𝑖

− =  𝜃𝑖  
    End For 
End For 
 



hidden layers was chosen strategically to allow for the 
modeling of complex boundaries while also avoiding 
overfitting.  While each hidden layer used the relu activation 
function, 4 different activation functions were considered on 
the output layer; linear, relu, sigmoid and tanh.  

While the linear activation fXQcWiRQ dReVQ¶W bRXQd Whe 
output value, the relu, sigmoid and tanh are all bounded.  The 
relu function prevents negative values, the sigmoid function 
bounds the output to between 0 and 1 and the tanh is defined 
from -1 to 1.  Each output activation has its theoretical 
advantages, but the linear function was the only one that 
produced consistent convergence.  The results for the linear 
activation function on several network sizes are shown in 
Figure 4.  Surprisingly,  the relu activation function converged 
and performed quite well for only one network with hidden 
layers of size 400/200.   

 

 
Figure 4 

Since our FFN is modeling a Q-Function which can take 
an infinite number of possible values, the linear function does 
make the most sense.  Furthermore, since the scale of the 
reward ranges from -100 to 100, bounding the Q-Function 
between -1 and 1 results in the immediate reward dominating 
the update rule in (6).  Thus, with the sigmoid and tanh output 
activation functions decisions are made largely on maximizing 
one step reward rather than maximizing cumulative reward.  
The reward would need to be scaled if either of these 
activation functions are to be reconsidered in the future.  

Bounding created similar issues for the relu activation 
function.  By setting the minimum Q-Function output to zero, 
states that are considered extremely bad and only moderately 
bad are not differentiable.  Since all bad states are treated the 
same, e[WUemel\ bad VWaWeV aUeQ¶W acWiYel\ aYRided leading to 
sub-optimal decisions.  Overall, in the context of the problem, 
the linear activation function makes the most sense to model 
the Q-Function and empirical results support this fact. 

 

B. Adaptive Learning Rates 
Our second experiment was conducted to find the optimal 

learning rate parameter for our given network. 7 different 
learning rates were considered as well as well as 3 different 
adaptive learning rate algorithms; RMSProp, AdaGrad, and 
the Adam optimizers.  Each of the adaptive learning rate 

algorithms dynamically adjust the learning rate for each 
weight parameter in the network.  AdaGrad sets larger 
learning rates to parameters that are updated more 
infrequently, RMSProp updates learning rates based on 
magnitudes of recent changes to network weights and the 
Adam¶V RSWimi]eU updates learning rates based on recent 
magnitudes and variances of weight updates.   

 

 
Figure 5 

The best overall results were achieved XViQg Whe Adam¶V 
optimizer, however the RMSProp algorithm performed well 
for select initial learning rates.  The AdaGrad algorithm failed 
to converge for every learning rate tested.  We believe this is 
partly due to the overwhelming size of the network.  With two 
hidden layers of size 1000 and 250, there are a total of 
260,254 WXQable ZeighWV.  GiYeQ Whe Vi]e Rf Whe QeWZRUk, iW¶V 
likely the case that every weight is updated each time the 
network is trained; changing one weight will likely create a 
chain reaction of updates to other weights in the network.  
And, since AdaGrad adaptively decreases the learning rate for 
parameters that are updated frequently, such will result in 
deflated learning rates and slow convergence. 

The RMSProp and Adam¶V RSWimi]eU dRQ¶W face Whe Vame 
problem as AdaGrad.  These algorithms update the learning 
rate based on the average change and average volatility of 
each particular weight.  Moreover, when a particular weight 
begins to converge on some value, learning rates will 
automatically decay.  Lowering the learning rates as 
parameters converge is the ideal behavior.  In gradient 
descent, theUe¶V Whe inherent tradeoff between convergence 
speed and the optimality of the solution; the higher the 
learning rate, the quicker the learning but also the potential to 
overshoot the global minimum.  The lower the learning rate, 
the slower the convergence but the more likely we are to find 
the global minimum.   

 

C. Loss Function 
Our third experiment considered three loss functions;  the 

mean-squared error (MSE), mean absolute error (MAE) and 
mean squared logarithmic error (MSLE).  The results for each 
loss function are shown in the Figure 6.  Both the MAE and 
MSE performed quite well.  The MAE found the optimal 



reward quicker, however it is not monotonic, nor did it 
converge over 1000 episodes. 

 

 
Figure 6 

Mathematically, the MSE and MAE are quite similar.  
Unlike the MAE, the MSE squares the difference between the 
predicted output and actual output making it more sensitive to 
outliers which may explain the initial outperformance of the 
MAE.  However, the major issue with the MAE was its lack of 
convergence.  After careful investigation, this can be 
explained by looking at the gradient of MAE.  Being a 
piecewise function, the gradient of the MAE is constant, and 
thus the same for small and large losses.  Ideally, larger 
gradients for large losses and smaller gradients for smaller 
losses are preferred.  This constant gradient prevents the MAE 
from converging even with adaptive learning rates.  Unlike 
MAE, the MSE is parabolic and thus operates efficiently with 
smaller gradient updates for smaller losses.     

The MSLE is akin to MSE, however it is concerned with 
percentage error in estimations.  The MSLE was the worst 
performing loss function which is likely due to the bounded 
nature of the formula preventing extremely large losses.  The 
MSLE also suffers the same gradient issues as the MAE.  
Being a logrithmic function,  large and small errors are treated 
approximately the same. 
 

D. Epsilon Decay Speed 
Our fourth experiment tested the decay speed of 𝜖.  As our 

implementation is an 𝜖-greedy off policy DQN, the value 𝜖 
determines how often our agent acts randomly and how often 
it acts greedily exploiting the best policy.  𝜖 was initialized to 
1.0 and decayed by the decay factor after each transition.  In 
general, higher decay factors outperformed lower ones as 
shown in Figure 7.  However, extremely high decay factors 
such as 0.999999 performed the worst.  This makes sense as 
with such a high decay factor our agent is selecting most 
actions at random for thousands of episodes.  Considering 
there are on average 100 transitions in an episode, after 1000 
episodes with a decay speed of 0.999999 our agent is acting 
randomly 90% of the time ሺ0.999999100∗1000 ሻ.  The optimal 
decay speed and that which was used in the final model was 
found to be 0.999, indicating that after 20 episodes, the agent 
is acting greedily roughly 86% of the time ሺ0.999100∗20ሻ. 

 
Figure 7 

E. Discount Factor Selection 
Our final experiment considered 14 discount rates.  The 

results for this experiment are shown in Figure 8.  The 
discount factor producing the quickest convergence was found 
to be 0.995.  Interestingly, any discount factor higher than this 
prevented convergence.  Such high gamma values encouraged 
the lander to land as quickly as possible instead of taking an 
infinite stream of slightly negative rewards.  The priority with 
which the agent placed on landing quickly prevented it from 
ever properly landing and converging on a solution.  In the 
other extreme, discount rates below 0.98 resulted in the lander 
taking its time to land.  With many failed attempts at landing 
and receiving a -100 reward, the agent decided the optimal 
decision was to remain in the air indefinitely and accepting a 
reward of -0.3; this makes sense as the value of remaining 
ascent is an increasing function of the discount rate. 

 

 
Figure 8 

VI. CONCLUSION 
        SRlYiQg AI G\m¶V LunarLander-v2 with a DQN proves 
the usefulness of FFN approximators for the Q-Function.  
Additionally, strategies such as experience replay, and Q-
Target fixing are useful in aiding the convergence of non-
linear Q-Function approximators.  While basic parameter 
tuning of the DQN was enough to solve the LunarLander-v2 
environment, more complex problems may require more 
sophisticated tuning.  Thus, more efficient strategies to train 
parameters simultaneously remains to be investigated. 
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