Correlated Q-Learning

Scott Merrill
smerrill7@gatech.edu
git hash: 41b50c9dfec35d99961ae798177c55b0da706c6f

I. INTRODUCTION

Reinforcement Learning (RL) is typically modeled as a
Markov Decision Processes (MDP) and is designed to enable
a single agent to identify the series of actions that lead to the
maximum cumulative reward. While this framework is
sufficient for many problems, it ignores actions taken by
friends, adversaries and other agents who themselves are
altering the environment. This paper explores RL
environments involving multiple agents with shared or
competing goals.

While many algorithms have been proposed to identify
optimal equilibrium policies in multiagent environments,
current solutions either have limited applicability or require
strict criteria to converge. Littman’s Friend-or-Foe-Q (FF-Q)
[3] can identify optimal policies specifically in two player
zero-sum games. Hu and Wellman’s Nash-Q [2] is applicable
to general sum games, however it converges only when a
single unique Nash Equilibrium exists. Thus, a solution is
needed to generalize the larger class of general sum
multiagent environments with multiple equilibria. Greenwald
and Hall’s Correlated-Q (CE-Q) [1] generalized both Nash-Q
and FF-Q and demonstrates empirical evidence of
convergence to the optimal equilibrium points in several
Markov Games. In this paper, we replicate Greenwald’s
Soccer Game experiment to analyze the convergence
properties of CE-Q in zero-sum games and comment on its
appropriateness in general-sum games.

II. REINFORCEMENT LEARNING FOR GAME THOERY

A. Nash Equilibrium

Game theory studies problems concerning non-cooperative
competing agents whereby each agent acts as to maximize
their own utility. All finite games have a Nash Equilibrium
(NE), or a solution such that no player can increase their
utility by taken an alternate action. Thus, each agent attempts
to maximize their reward with respect to the action probability
distribution of the other players. Such equilibrium points are
interesting as they define the logical actions of players that
need not provide optimal payoffs.

Consider the two-player game of Chicken in Figure 1
where both the row and column players can dare the other
player for a riskier payoff of 7 or O or be chicken for risk
averse payoffs of 2 and 6. The game has two pure-strategy
NE at states (Dare, Chicken) and (Chicken, Dare); in these
states, neither player can increase their reward by changing
their action. In a single iteration of the game, the average
expected reward to each player is 4.5 which is suboptimal; if

both players coordinate and Chicken, they each would receive
a reward of 6.

Player 2
Dare |Chicken
Dare 0,0 7,2

Chicken| 2,7 66

Figure 1: Chicken Payoff Table

Player 1

In multiple iterations of Chicken, however, their also exist a
mixed-strategy NE. Rather than taking a deterministic action,
each agent can choose to Chicken or Dare based on some
probability distribution. In this particular game, the optimal
decision of each player can be shown to dare 1/3 of the time
and play chicken 2/3 of the time. Such results in an average
reward to each player of 4 2/3. Moreover, while this mixed
strategy NE provides a higher average reward than the pure
strategy NE, it is still less than the expected value to both
players if they cooperated.

B. Correlated Equilibrium

A correlated equilibrium (CE) occurs when each agent
chooses their action based on a public signal. These signals
enable inference allowing players to optimize with respect to
the other player’s probability distribution conditioned on their
own; thus, CE generalizes Nash.

In the Chicken example, a CE can be created by
introducing a central planner that advises each agent on the
action they should select. This central planner is designed to
prevent both agents from choosing to dare and receiving a
reward of zero. Thus, the planner chooses amongst 3
combinations of advice to provide; he can tell both players to
chicken or tell one player to dare and the other to chicken.
Both players know of the planner’s intentions and if told to
chicken, they can induce a 50% chance the planner told the
other player to chicken and a 50% chance he told the other
player to dare. Thus, the player’s expected payoff if they

chicken is 4 G *6+ ; * 2) and their expected payoff if they

dare is 3.5 G *7 + % * 0). Since, a rational agent will always

chicken if told to do so, it follows they will also dare if told to
dare; as when told to dare there is a 100% chance the other
player was told to chicken, a reward of 7 would be received.
Moreover, if each agent acts according to the planner, their

expected payoff would be 5 (% *4 + % * 7). Thus, the CE

created by introducing the planner is an improvement over
both pure and mixed-strategy NE.

C. Markov Games

Stochastic games are multiagent repeated games with
probabilistic transitions. Such can be formally expressed by a
tuple (I, S,4;(s), P, R;(s, @)), where I is the set of players, S
is a set of states, A4;(s) cooresponds to the action space for

mailto:smerrill7@gatech.edu

player i at state s, P is a probabilistic transition function and
R; (s, @) corresponds to player i’s reward for joint actions @ €
(A1(s), ..., A, (s)) taken by all agents at state s. Markovian
games are a subclass of stochastic games in which the
transition function is independent of past actions. That is,
P[s¢s1lse, Ay, -oe) So, do] = P[Ses1lSe dyr 1.

MDP’s are single-agent Markov Games whose optimal
action-value function can be characterized by Bellman’s
Equations shown in (1), (2) and (3). Q*(s, a) describes the
long-term reward from taking action a in state s, receiving
reward R(s, a) and following the optimal policy thereafter.
V*(s) is an estimate of the value of state s and *(s) is the
policy which defines the action that maximizes the agent’s
value at state s.

Q'(s,a) = (1 =y)R(s,a) + VZ P[s'|s,a]Vi(s") (1)

V') = o, 0 -~
m*(s) € argmaxgeas) Q*(s, a) (©)

In Markov games, Q* (s, a) and V*(s) are defined over
state and action-vector pairs.

(s, = A=PR(s,D+7) Pls'ls alvi(s") @)

V(s) = max Q(s, d) ©)

However, the analogue of =* where each player choses the
action that optimizes reward with respect to others actions is
insufficient as deterministic policies that satisfy these
conditions need not exist.

I1l. SOCCER GAME

The soccer game environment defined originally by
Littman [3] and later adopted by Greenwald [1] consists of
two adversaries A and B. The field isa 2 X 4 grid with Player
B given initial possession and a starting position of (0, 1)
while Player A is defending at position (0, 2). These
conditions define the starting state s. At the beginning of an
episode, each player can choose to move North, South, East,
West or stick and these actions are executed in random order.
If both players try to move to the same location, only the first
player moves. Additionally, if the player with the ball
attempts to move to a location occupied by the other player,
possession of the ball is transferred. Player B’s goal, indicated
by the column of B’s in Figure 2, is at location at (0, 3) and (1,
3) and Player A’s goal, marked by the column of A’s, is at (0,
0) and (1, 0). When a goal is scored, the game ends and a
+100 reward is given to the scoring player and a -100 reward
is given to the other player. If an “own” goal is scored these
rewards are flipped.

(0.0) (0,3)

:

DODOW| WO w

(L0) 13)

Figure 2: State s of Soccer Game Environment

Note that optimal policies in this game are not
deterministic since any deterministic action selection strategy
from Player B in state s can be blocked indefinitely by Player
A. Moreover, the lack of a deterministic equilibrium policy
makes the environment an interesting one to study. This paper
uses Li Zeng’s replication of this environment [5] to test the
convergence properties of multiagent Q-learning, Friend-Q,
Foe-Q and CE-Q.

IV. MULTIAGENT Q-LEARNING IMPLEMENTATION

Generalizing Q-learning to multiagent environments is
intuitive. For each agent, Q;(s, d) and V;(s) are initialized
arbitrarily. For each episode, agents select an action, observe
a reward and a new state. The value of this resulting state is
estimated using some objective function. These rewards and
values are then used to update Q;(s, d). The learning rate, a,
is slowly annealed and the process terminates after a
designated number of iterations. Full pseudocode provided by
Greenwald is shown in Algorithm 1.

laarithm 1- Multi earni

fort=1to T:
1. Simulate actions a4, ..., a,
2. Observe rewards Ry, ..., Ry,
3. fori=1ton:
a. Vi(s) = fi(Qi(s"), ., Qu(sh)
b. Qi(s,a) =1 -a)Qi(s,a) +a[(1-y)R; +
yVi(s")
4. Agents choose action ay, ..., a,
5. s=s'a; =aj,a, =ay

6. Decay a according to decay schedule

A. Q-learning

The standard Q-learning algorithm was implemented
according to Algorithm 1. Two Q-tables—one for Player A
and one for Player B—with a dimension of (8, 8, 2, 5) were
used. These dimensions correspond to the 8 available
locations for Player A, the same 8 locations for Player B, a
binary flag indicating if Player A has the ball, and the 5
available actions an agent can take. The value function in step
3(a) of Algorithm 1 is consistent with the single agent case
and shown in (6). The Q-function is updated using this value
according to 3(b).

Vi(s") = m{f‘X Q(s¢41,@) (6)

B. Friend - Q

In Friend-Q both agents assume other agents are friendly
and will act in their best interest. Moreover, each player’s
strategy relies on the actions of others and thus, the Q-tables
need an additional dimension. Each players Q-function is a
table of size (8,8,2,5,5) with the first 3 states defined similarly
as Q-learning and 4t and 5w dimensions corresponding to
Player A’s and Player B’s action respectively. In addition, to
account for the assumed collusion, the value function in 3(a) is
updated according to (7).

Vi(s") = max

a;€EA1,02€A;

Qi [Sv ai;, aZ] (7)

C. Foe-Q

Foe-Q treats Player A and B as adversaries whereby each
attempt to minimize the reward received by the other player.
Von Neuman’s minimax is used in place of the value function
in 3(a). The minimax value update used for the Foe-Q
algorithm is shown in (8) where }:;(s) denotes the
probabilistic action space of player i at state s.

Vi(s') = max min Q(s,01,a;) = —V5(s) (8)

01€21(5) a€A(s)

Because g, is a probability distribution over actions,
Q4 (s, 0y, ay) is different from Q, (s, a;, a,) seen previously.
The two are related however by (9).

Q(S' 01' aZ) =

> a@esaw) ©

a,€Aq

In other words, Player A assumes Player B will follow the
probabilistic policy that minimizes Player A’s expected
reward. Since the Soccer Environment is a zero-sum game,
(9) can also be interpreted as each player attempting to
maximize their reward with respect to the other players
actions and thus, the minimax operator is a generalization of
Hu and Wellman’s Nash-Q in zero-sum games [2].

Unlike Q-learning and Friend-Q, the Foe-Q value update
rule requires finding an optimal probability distribution at
each time step. To find this probability distribution a set of
linear equations needs be solved. We solve these equations
using a linear programming library called cvxopt which
requires modeling the problem in conical form shown in (10).

Minimize: cTx
subjectto Gx <h (10)
and Ax=0D>b

To re-write (8) in linear programming form, we define
015 = (01(s",a1), ..., 01(s',a5)) as a probability vector
representing the chance of selecting some action q; in state s’.
Additionally, we define the action-value function
Q.(s',a4,a;) as a (8,8,2,5,5) table with the same
interpretation as in the case of Friend-Q. Lastly, we’ll define
a value x, as the action taken by the second player that

minimizes (9) and x, as a (1 X 5) vector| with every value
being x,. Thus, x, = mizn QlTS,cr1 o and xg = (%, ..., Xg).
1 s'01,

From this formulation it follows that xo — QlT,s'Ul,s’ <0,

leading to our first constraint. We re-write this constraint to
be consistent with the form shown in (10):

Gix < 0,where G; = (1, —Qis,) and x = (Xo)

Tys!

In the constraint above, 1 denotes a 1 X 5 vector of ones.
Thus, G,is a5 X 6 vector, where the first element of the vector
is a one and the remaining is the action-value function for
Player 1. xis a 6 X 1 vector with the first element x, and the

remaing elements being o, ;». Moreover, G;x is a set of 5
linear equations shown in (12).

Y= XxXy— Z 0,(a)Q(s,ay,a,),a, =1,...,5 (12)

a,€A,

Constraints 2 and 3 follow from the fact that o, . is a
probability distribution over actions and thus each action must
be non-negative and sum to 1. Constraint 2 and 3 are
presented below.

G,x < 0, where G, = (g _OI) and — I is the
5 X 5 identity matrix
alx =1, wherea= (0,1,...,1)T

We vertically stack G; and G, and define G = (gl) This
2

formulation summarizes the minimization actions taken by
Player 2. Additionally, Player 1 attempts to maximize his own
reward, however the standard form used by cvxopt looks for
minimum values. Moreover, the value —x, needs to be
minimized. To do this we set ¢ = (—1, ..., 0) resulting in
Player 1 attempting to maximize x,, subject to the adversarial
actions of Player 2 trying to minimize this value.

D. Correlated - Q

The potential existence of multiple equilibria in Markov
Games makes learning optimal policies challenging.
Greenwald proposes that the use of different objective
functions that identify a single equilibrium can solve this
problem. He specifically introduces four CE-Q algorithms;
utilitarian (UCE-Q), egalitarian (eCE-Q), republican (rCE-Q)
and libertarian (ICE-Q). These policies help ensure the
existence of a single equilibrium policy and thus the
convergence of the CE-Q. Consistent with the charts shown
in his paper, we implement uCE-Q which maximizes the sum
of both players’ rewards. The uCE-Q value update in 3(a) of
Algorithm 1 is given by (13). That is, we are looking for the
action-probability distribution of each player that maximizes
the total reward expectation.

0 € amaxZi;Z5c40(@)Q; (s, d) (13)
0€CE

To cast this as a linear programming problem, we first
note a rationality constraint for Player 1 shown below:

Q15,07 () = Q(k,2)a™(i,:),Vk =1,..,5

Thus, there exists some action i for Player 1 whose
expected reward dominates all other actions given Player 2
acts rationally following the optimal stochastic policy. To
encode this in conical form, we rewrite this constraint as
G,0” < 0, where g™ is the row-wise vectorization of ¢ and G,
as a block diagonal matrix where each block is equivalent to

G = (Ql,s(k. :) - Qus(i:)) Vk #i. Thus, G;isa (20 X

25) matrix and o™ is a (25 X 1) probability vector.
Player 2 is bounded by the same rationality constraint but
selects actions based on the columns of Q, and ¢ as shown:

QZ,S(:'k)O-T(Ij) 2 Ql,s(:'k)o-T(:!j)!Vk = 1' '5

Similar to Player 1, we re-write this constraint as G,6* < 0
and define G, as a block diagonal matrix with each block

Gy = (szs(:,k) - Q(:,i)),v k # i. However, since ¢* is

the (25 X 1) vectorization of the (5 X 5) joint probability
matrix o, the columns in @ corresponds to every 5 row
elements in ¢*. For example, the first column ¢; of g is
relatedto o by ¢; = (a*(O),a*(S),0*(10),0*(15),0*(20)).
Moreover, 4 columns of zeros are required after each G, ; to
relate o to o™ and ensure each G, ; is multiplied with the

correct probabilities. An illustration of G, is shown in Figure
3.

o[o]
Gaqlolo] o]0
23 oo

ol o
= L

X
cooolocc o

o o
o o o 0 3
o| ° o \ o o
o |o o ololo
o o o oo o o ololo
olg,a © o ololg o olg,al 0|00
o 2.2 o o oo 2.2 o o 2.2 o o|o
0 0 olo]o olololo 0 0 ololo
o olofo ofofofo o oo oo
olo|lg ofolo|o|gaalo|o|o|ofGaalo|o]o|ofGaalo]0
ojo 2,3 . ojlojo|o 2.3 ojojolo 2.3 ojlojojo 2,3 oo
ojo ojlolojo ojolojo olojo ojo
ojo o ojlojo|o | ojojo|o ojojoj|o | o
olofol|g Gaal 010|090 lGaalolo)0]0|Gaalo]ol0]0|Gaal @
ojo|o 24 2.4 ojlo | ol|o 24 jojojo|oO 24 ‘ ojojo|o 2.4| o
lololo olojolo| Jolo|lo]o lo]olo]o lo
ojojo|o ojojo|o0O ojojo|oO ojlojo|o
olofo]o olo|ofo olofo]o oflo|ofo
Gzos Gas Gas Gas
olofo]o olo|ofo olofo]o olofo]|o
lo]ofo]o olojo]o ololo]c olo|ofo

Figure 3: Matrix G,

Finally, since " is a joint probability vector, two
constraints are needed to ensure probabilities are non-negative
and sum to 1. Similar to Foe-Q, we ensure non-negativity of
probabilities with the constraint G;6* < 0 where G5 is the
(25 X 25) negative identity matrix. We combine constraints

Gy
G4, G, and G5 by vertically stacking them letting G = (Gz>.

G
To ensure the joint probability vector sums to one, we define
our final constraint as a’¢* = 1, where a7 is a vector of 25
ones.

uCE-Q, given by (13), maximizes the sum of total reward,
thus, we define our target ¢ accordingly as the sum of each
player’s vectorized Q-function; thus ¢ = (QLS + QZ,S)T.
Finally, we can express the problem in linear programming
standard form summarized below:

Minimize: cTo*
subjectto Go* <0
and alo* =1

V. EXPERIMENTS & RESULTS

Figure 3 in Greenwald’s paper graphs the changes in
Player A’s Q-values at state s when Player A takes action S
and Player B chooses to stick using traditional Q-learning,
Friend-Q, Foe-Q and uCE-Q. Q-value changes are defined
over consecutive iterations by ERR! = |Qf (s, d) —
Qf'(s,d)|. Greenwald leaves out specific details on the
hyperparameters used in his experiments only mentioning that
y = 0.9 and € and a were decayed to a minimum value of
0.001. Moreover, initial values of € and a and their respective
rates of decay weren’t specified.

Several experiments were run to identify the
hyperparameters that produce results most similar to
Greenwald’s. For each learning algorithm, ten initial values
for alpha (1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1), ten
initial values for epsilon (1.0, 0.975, 0.95, 0.925, 0.9, 0.875,
0.85, 0.825, 0.8, 0.775) and ten decay factors (0.99999,
0.999991, 0.999992, 0.999993, 0.999994, 0.999995,
0.999996, 0.999997, 0.999998 and 0.999999) were tested. All
possible combinations of these hyperparameters were modeled
and the set of parameters resulting in the charts most similar to
Greenwald’s were maintained.

A. Q-learning

Figure 4(d) shows ERR! for the Q-learning algorithm with

a = 0.3,e = 0.8 and their respective decay factors set to 0.
999995 and 0. 999994. The chart is somewhat similar to
Greenwald ‘s with differences likely explained by inital values
and decay speeds chosen for «; the algorithm proved to be
very sensitive to these parameters. Regardless, the important
conclusion in the lack of convergence is maintained. While
ERR! is decreasing, this can be explained by the decay of « as
the size of the oscillations and a decline proportionally.

This lack of convergence demonstrates the instability of Q-
learning in Markov Games. Since Q-learning doesn’t consider
the motives of others when determining an action, the Q-
function is learnt from a noisy, dynamic environment and
convergence can’t be guaranteed. In other words, the Q-
learner is attempting to find a deterministic policy, but since
another agent is also acting in the environment, the world isn’t
stationary and such a policy doesn’t exist.

B. Friend-Q

Figure 4(c) shows ERR! for Friend-Q with @ = 0.1,¢€ =
1.0 and both decay factors set to 0.999995. The chart is very

Correlated-Q Foe-Q
os

g0

502

0z © 08 1.0 0.0 0.2

0.4 o
Simulation reartion =10¢

(a) UCE-Q

08 o6
Simulation iReartion =108

(b) Foe-Q

Qvalue Difference
Q-value Difference

00

] 2 4 6 8
Simulation iteartion =10¢

(c) Friend-Q

(d) Q-learner

Figure 4: Reproducing Greenwald Graphs

similar to Greenwald’s and demonstrates extremely quick
convergence due to each agent learning a deterministic policy.

Since each agent in Friend-Q, assumes their opponent will
cooperate, Player B erroneously assumes Player A will always
take action E. Thus, Player B concludes if he/she also always
takes action E, a goal will be scored in two moves. The first
move in this sequence can be seen by Player B’s Q-function in
state s shown in Figure 5; the maximum value of 95.16, and
the actions assumed by Friend-Q, occurs when both agents
move East on their first turn.

Player A similarly makes irrational assumptions about
Player B’s motives and assumes that in state s, Player B will
always move West, resulting in an immediate reward to Player
A. Thus, Player A erroneously concludes his/her action is
irrelevant. Moreover, while Friend-Q converges, both agents
learn irrational polici

Figure 5: Friend-Q action-value function in state s

C. Foe-Q

Figure 4(b) shows ERR{ for Foe-Q with &« = 0.2,¢ = 1.0
and both decay factors set to 0.999995. The Figure closely
resembles Greenwald’s charts with both converging in around
800,000 iterations. Similar to Greenwald’s experiment, the
Foe-Q algorithm converges to a hon-deterministic policy
whereby each player randomly choses between sticking and
moving south. The policy for Player A in state s shown in
Figure 6. Note that Player A assigns no probability to actions
E, W or N which makes sense as these moves intuitively don’t
help Player A play defense in state s. Moreover, we find that
Foe-Q converges to a rational mixed-policy.

D. Correlated - Q

Figure 4(a) shows ERR! for uCE-Q using the same
parameters as Foe-Q. Similar to Greenwald’s paper, the
charts for Foe-Q and uCE-Q are nearly identical highlighting
the fact that in zero-sum games, uCE-Q generalizes Foe-Q.
We also find the uCE-Q algorithm converges to a similar non-
deterministic policy as Foe-Q. As shown in Figure 6, both
algorithms identify the joint actions taken in state s are
approximately uniformly distributed over 4 possibilities (S, S),
(Stick, Stick), (S, Stick) and (Stick, S). This confirms

Greenwald’s conclusion that in zero-sum games CE-Q learns
the same policy as minimax.

Figure 6: uCE-Q (left table) and Foe-Q (right table) policies

VI. CONCLUSION

Chris Watkins proved with repeated application of the Q-
learning rule and adequate exploration of the environment, Q-
learning convergences to the optimal action-value function
with probability 1 [4]. The technique, however, doesn’t scale
to multiagent environments. Much recent research has studied
algorithms that converge to equilibrium points in multiagent
environments; Hu and Wellman demonstrate that Nash-Q
converges under strict conditions and Greenwald’s CE-Q
generalizes Nash-Q but fails to address its weaknesses.

The difficulties in identifying converging algorithms in
multiagent system (MAS) stem from the existence of multiple
equilibria. In these environments, traditional Q-learning is
non-ergodic attempting to converge to multiple equilibrium
policies. Designing systems compatible with this multiagent
framework is a balancing act between allowing agents to
specify their own behaviors and creating a central planner to
coordinate agent actions. The former can lead to
miscoordination while the latter rarely creates rational polices.
MAS designs relying on CE concepts can theoretically lead to
agent coordination resulting in larger rewards. Moreover,
Greenwald’s paper provides an important foundation for
future studies to identify more generalized, adaptive and
decentralized procedures that can be applied to sophisticated
environments. This paper confirms Greenwald’s conclusions
on the convergence properties of CE-Q and encourages future
research into CE-Q as a solution in MAS design.

REFERENCES

[1]1 Greenwald, A., & Hall, K. (2003). Correlated-Q learning.

[21 Hu, J and Wellman, M. (1998). Multiagent reinforcement
learning: Theoretical framework and an algorithm.

[3]1 Littman, M. L. (2001). Friend-or-Foe Q-learning in General-Sum
Games.

[4] Watkins and Dayan (1992), Q-Learning.

[5]1 Zeng, L. (2019, July 14). ZengliX/SoccerGame. Retrieved July
18, 2020, from https://github.com/zengliX/SoccerGame

https://github.com/zengliX/SoccerGame

	I. Introduction
	II. Reinforcement Learning for Game Thoery
	A. Nash Equilibrium
	B. Correlated Equilibrium
	C. Markov Games

	III. Soccer Game
	IV. MultiAgent Q-Learning Implementation
	A. Q-learning
	B. Friend – Q
	C. Foe – Q
	D. Correlated - Q

	V. Experiments & Results
	A. Q-learning
	B. Friend – Q
	C. Foe - Q
	D. Correlated - Q

	VI. Conclusion
	References

