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I. INTRODUCTION 

     Reinforcement Learning (RL) is typically modeled as a 

Markov Decision Processes (MDP) and is designed to enable 

a single agent to identify the series of actions that lead to the 

maximum cumulative reward.  While this framework is 

sufficient for many problems, it ignores actions taken by 

friends, adversaries and other agents who themselves are 

altering the environment.  This paper explores RL 

environments involving multiple agents with shared or 

competing goals. 

     While many algorithms have been proposed to identify 

optimal equilibrium policies in multiagent environments, 

current solutions either have limited applicability or require 

strict criteria to converge.  Littman’s Friend-or-Foe-Q (FF-Q) 

[3] can identify optimal policies specifically in two player 

zero-sum games.  Hu and Wellman’s Nash-Q [2] is applicable 

to general sum games, however it converges only when a 

single unique Nash Equilibrium exists.  Thus, a solution is 

needed to generalize the larger class of general sum 

multiagent environments with multiple equilibria.  Greenwald 

and Hall’s Correlated-Q (CE-Q) [1] generalized both Nash-Q 

and FF-Q and demonstrates empirical evidence of 

convergence to the optimal equilibrium points in several 

Markov Games.  In this paper, we replicate Greenwald’s 

Soccer Game experiment to analyze the convergence 

properties of CE-Q in zero-sum games and comment on its 

appropriateness in general-sum games.  

 

II. REINFORCEMENT LEARNING FOR GAME THOERY  

A. Nash Equilibrium 

     Game theory studies problems concerning non-cooperative 

competing agents whereby each agent acts as to maximize 

their own utility.  All finite games have a Nash Equilibrium 

(NE), or a solution such that no player can increase their 

utility by taken an alternate action.  Thus, each agent attempts 

to maximize their reward with respect to the action probability 

distribution of the other players. Such equilibrium points are 

interesting as they define the logical actions of players that 

need not provide optimal payoffs. 

     Consider the two-player game of Chicken in Figure 1 

where both the row and column players can dare the other 

player for a riskier payoff of 7 or 0 or be chicken for risk 

averse payoffs of 2 and 6.  The game has two pure-strategy 

NE at states (Dare, Chicken) and (Chicken, Dare); in these 

states, neither player can increase their reward by changing 

their action.  In a single iteration of the game, the average 

expected reward to each player is 4.5 which is suboptimal; if 

both players coordinate and Chicken, they each would receive 

a reward of 6.    

 
Figure 1: Chicken Payoff Table 

   In multiple iterations of Chicken, however, their also exist a 

mixed-strategy NE. Rather than taking a deterministic action, 

each agent can choose to Chicken or Dare based on some 

probability distribution.  In this particular game, the optimal 

decision of each player can be shown to dare 1/3 of the time 

and play chicken 2/3 of the time.  Such results in an average 

reward to each player of 4 2/3.  Moreover, while this mixed 

strategy NE provides a higher average reward than the pure 

strategy NE, it is still less than the expected value to both 

players if they cooperated.  

B. Correlated Equilibrium 

     A correlated equilibrium (CE) occurs when each agent 

chooses their action based on a public signal.  These signals 

enable inference allowing players to optimize with respect to 

the other player’s probability distribution conditioned on their 

own; thus, CE generalizes Nash.   

     In the Chicken example, a CE can be created by 

introducing a central planner that advises each agent on the 

action they should select.  This central planner is designed to 

prevent both agents from choosing to dare and receiving a 
reward of zero.  Thus, the planner chooses amongst 3 

combinations of advice to provide; he can tell both players to 

chicken or tell one player to dare and the other to chicken.  

Both players know of the planner’s intentions and if told to 

chicken, they can induce a 50% chance the planner told the 

other player to chicken and a 50% chance he told the other 

player to dare.  Thus, the player’s expected payoff if they 

chicken is 4 (
1

2
∗ 6 +

1

2
∗ 2) and their expected payoff if they 

dare is 3.5  (
1

2
∗ 7 +

1

2
∗ 0).  Since, a rational agent will always 

chicken if told to do so, it follows they will also dare if told to 

dare; as when told to dare there is a 100% chance the other 

player was told to chicken, a reward of 7 would be received.  

Moreover, if each agent acts according to the planner, their 

expected payoff would be 5  (
2

3
∗ 4 +

1

3
∗ 7).  Thus, the CE 

created by introducing the planner is an improvement over 

both pure and mixed-strategy NE.   

C. Markov Games 

     Stochastic games are multiagent repeated games with 

probabilistic transitions.  Such can be formally expressed by a 

tuple 〈𝐼, 𝑆, 𝐴𝑖(𝑠), 𝑃, 𝑅𝑖 (𝑠, 𝑎⃗) 〉, where I is the set of players, S 

is a set of states, 𝐴𝑖(𝑠) cooresponds to the action space for 
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(4) 

player i at state s, P is a probabilistic transition function and 

𝑅𝑖(𝑠, 𝑎⃗) corresponds to player i’s reward for joint actions 𝑎⃗  ∈
(𝐴1(𝑠), … , 𝐴𝑛(𝑠))  taken by all agents at state s.  Markovian 

games are a subclass of stochastic games in which the 

transition function is independent of past actions.  That is,  

𝑃[𝑠𝑡+1|𝑠𝑡 , 𝑎⃗𝑡 , … , 𝑠0, 𝑎⃗0] = 𝑃[𝑠𝑡+1|𝑠𝑡 , 𝑎⃗𝑡  ]. 
     MDP’s are single-agent Markov Games whose optimal 

action-value function can be characterized by Bellman’s 

Equations shown in (1), (2) and (3).  Q∗(𝑠, a) describes the 

long-term reward from taking action a in state s, receiving 

reward R(𝑠, a) and following the optimal policy thereafter.  

𝑉∗(𝑠) is an estimate of the value of state s and 𝜋∗(𝑠) is the 

policy which defines the action that maximizes the agent’s 

value at state s. 

 

Q∗(𝑠, a) = (1 − 𝛾)R(𝑠, a) + 𝛾 ∑ 𝑃[𝑠′|𝑠, a]𝑉𝑖(𝑠′)

𝑠′

 

𝑉∗(𝑠) = max
𝑎 ∈𝐴(𝑠)

𝑄(𝑠, 𝑎) 

𝜋∗(𝑠) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴(𝑠) 𝑄∗(𝑠, 𝑎) 

 

     In Markov games, 𝑄∗(𝑠, 𝑎) and 𝑉∗(𝑠) are defined over 

state and action-vector pairs. 

 

𝑄𝑖(𝑠, 𝑎⃗) = (1 − 𝛾)𝑅𝑖(𝑠, 𝑎⃗) + 𝛾 ∑ 𝑃[𝑠′|𝑠, 𝑎⃗]𝑉𝑖(𝑠′)

𝑠′

 

𝑉(𝑠) = max
𝑎 ∈𝐴(𝑠)

𝑄(𝑠, 𝑎⃗) 

 

However, the analogue of 𝜋∗ where each player choses the 

action that optimizes reward with respect to others actions is 

insufficient as deterministic policies that satisfy these 

conditions need not exist.   

 

III. SOCCER GAME 

     The soccer game environment defined originally by 

Littman [3] and later adopted by Greenwald [1] consists of 

two adversaries A and B.  The field is a 2 X 4 grid with Player 

B given initial possession and a starting position of (0, 1) 

while Player A is defending at position (0, 2).  These 

conditions define the starting state s.  At the beginning of an 

episode, each player can choose to move North, South, East, 

West or stick and these actions are executed in random order.  

If both players try to move to the same location, only the first 

player moves.  Additionally, if the player with the ball 

attempts to move to a location occupied by the other player, 

possession of the ball is transferred.  Player B’s goal, indicated 

by the column of B’s in Figure 2, is at location at (0, 3) and (1, 

3) and Player A’s goal, marked by the column of A’s, is at (0, 

0) and (1, 0).  When a goal is scored, the game ends and a 

+100 reward is given to the scoring player and a -100 reward 

is given to the other player.  If an “own” goal is scored these 

rewards are flipped.  

 

 
Figure 2: State s of Soccer Game Environment 

     Note that optimal policies in this game are not 

deterministic since any deterministic action selection strategy 

from Player B in state s can be blocked indefinitely by Player 

A.  Moreover, the lack of a deterministic equilibrium policy 

makes the environment an interesting one to study.  This paper 

uses Li Zeng’s replication of this environment [5] to test the 

convergence properties of multiagent Q-learning, Friend-Q, 

Foe-Q and CE-Q. 

 

IV. MULTIAGENT Q-LEARNING IMPLEMENTATION 

     Generalizing Q-learning to multiagent environments is 

intuitive.  For each agent, 𝑄𝑖(𝑠, 𝑎⃗) and 𝑉𝑖(𝑠) are initialized 

arbitrarily.  For each episode, agents select an action, observe 

a reward and a new state.  The value of this resulting state is 

estimated using some objective function.  These rewards and 

values are then used to update 𝑄𝑖(𝑠, 𝑎⃗).  The learning rate, 𝛼, 

is slowly annealed and the process terminates after a 

designated number of iterations.  Full pseudocode provided by 

Greenwald is shown in Algorithm 1.   

A. Q-learning 

     The standard Q-learning algorithm was implemented 

according to Algorithm 1.  Two Q-tables—one for Player A 

and one for Player B—with a dimension of (8, 8, 2, 5) were 

used.  These dimensions correspond to the 8 available 

locations for Player A, the same 8 locations for Player B, a 

binary flag indicating if Player A has the ball, and the 5 

available actions an agent can take.  The value function in step 

3(a) of Algorithm 1 is consistent with the single agent case 

and shown in (6).  The Q-function is updated using this value 

according to 3(b). 

 

𝑉𝑖(𝑠′) = max
𝑎

𝑄(𝑠𝑡+1, 𝑎) 

(1) 

Algorithm 1: Multiagent Q-learning  

 

for t = 1 to T: 

1. Simulate actions 𝑎1, … , 𝑎𝑛 

2. Observe rewards 𝑅1, … , 𝑅𝑛 

3. for i = 1 to n: 

a. 𝑉𝑖(𝑠′) = 𝑓𝑖(𝑄1(𝑠′), … , 𝑄𝑛(𝑠′)) 

b. 𝑄𝑖(𝑠, 𝑎) = (1 − 𝛼)𝑄𝑖(𝑠, 𝑎) + 𝛼[(1 − 𝛾)𝑅𝑖 +
𝛾𝑉𝑖(𝑠′) 

4. Agents choose action 𝑎1
′ , … , 𝑎𝑛

′  

5. 𝑠 = 𝑠′, 𝑎1 = 𝑎1
′ , 𝑎𝑛 = 𝑎𝑛

′  

6. Decay 𝛼 according to decay schedule 

(2) 

(3) 

(5) 

(6) 



(8) 

(9) 

(10) 

(12) 

B. Friend – Q 

     In Friend-Q both agents assume other agents are friendly 

and will act in their best interest.  Moreover, each player’s 

strategy relies on the actions of others and thus, the Q-tables 

need an additional dimension.  Each players Q-function is a 

table of size (8,8,2,5,5) with the first 3 states defined similarly 

as Q-learning and 4th and 5th dimensions corresponding to 

Player A’s and Player B’s action respectively.  In addition, to 

account for the assumed collusion, the value function in 3(a) is 

updated according to (7).   

 

𝑉𝑖(𝑠′) = max
𝑎𝑖∈𝐴1,𝑎2∈𝐴2

𝑄𝑖[𝑠, 𝑎𝑖 , 𝑎2] 

C. Foe – Q 

     Foe-Q treats Player A and B as adversaries whereby each 

attempt to minimize the reward received by the other player.  

Von Neuman’s minimax is used in place of the value function 

in 3(a).  The minimax value update used for the Foe-Q 

algorithm is shown in (8) where ∑ (𝑠)𝑖  denotes the 

probabilistic action space of player i at state s. 

 

𝑉1(𝑠′) = max
𝜎1∈Σ1(𝑠)

min
𝑎2∈𝐴2(𝑠)

𝑄1(𝑠, 𝜎1 , 𝑎2) =  −𝑉2(𝑠) 

 

     Because 𝜎1is a probability distribution over actions, 

𝑄1(𝑠, 𝜎1, 𝑎2) is different from 𝑄1(𝑠, 𝑎1 , 𝑎2) seen previously.  

The two are related however by (9). 

 

𝑄(𝑠, 𝜎1 , 𝑎2) =  ∑ 𝜎1(𝑎1)𝑄(𝑠, 𝑎1 , 𝑎2)

𝑎1∈𝐴1

 

 

     In other words, Player A assumes Player B will follow the 

probabilistic policy that minimizes Player A’s expected 

reward.  Since the Soccer Environment is a zero-sum game, 

(9) can also be interpreted as each player attempting to 

maximize their reward with respect to the other players 

actions and thus, the minimax operator is a generalization of 

Hu and Wellman’s Nash-Q in zero-sum games [2]. 

     Unlike Q-learning and Friend-Q, the Foe-Q value update 

rule requires finding an optimal probability distribution at 

each time step.  To find this probability distribution a set of 

linear equations needs be solved.  We solve these equations 

using a linear programming library called cvxopt which 

requires modeling the problem in conical form shown in (10).   

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:            𝑐𝑇𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝐺𝑥 ≤ ℎ 

𝑎𝑛𝑑                 𝐴𝑥 = 𝑏 

 

     To re-write (8) in linear programming form, we define 

𝜎1,𝑠′ = (𝜎1(𝑠′, 𝑎1), … , 𝜎1(𝑠′, 𝑎5)) as a probability vector 

representing the chance of selecting some action 𝑎𝑖  in state 𝑠′.  

Additionally, we define the action-value function 

𝑄1(𝑠′, 𝑎1, 𝑎2) as a (8,8,2,5,5) table with the same 

interpretation as in the case of Friend-Q.  Lastly, we’ll define 

a value 𝑥0 as the action taken by the second player that 

minimizes (9) and 𝒙𝟎 as a (1 X 5) vector| with every value 

being 𝑥0.  Thus, 𝑥0 = min
𝑎2

𝑄1,𝑠′
𝑇 𝜎1,𝑠′ and 𝒙𝟎 = (𝑥0, … , 𝑥0).   

     From this formulation it follows that 𝒙𝟎 −  𝑄1,𝑠′
𝑇 𝜎1,𝑠′ ≤ 0, 

leading to our first constraint.  We re-write this constraint to 

be consistent with the form shown in (10): 

 

𝐺1𝑥 ≤ 0, 𝑤ℎ𝑒𝑟𝑒 𝐺1 = (𝟏, −𝑄1,𝑠′
𝑇 ) and  𝑥 =  ( 𝑥0

𝜎1,𝑠′
) 

 

     In the constraint above, 1 denotes a 1 X 5 vector of ones.  

Thus, 𝐺1is a 5 X 6 vector, where the first element of the vector 

is a one and the remaining is the action-value function for 

Player 1.  x is a 6 X 1 vector with the first element 𝑥0 and the 

remaing elements being 𝜎1,𝑠′ .  Moreover, 𝐺1𝑥 is a set of 5 

linear equations shown in (12). 

 

𝑦 =  𝑥0 − ∑ 𝜎1(𝑎1)𝑄(𝑠, 𝑎1, 𝑎2)

𝑎1∈𝐴1

, 𝑎2 = 1, … , 5 

 

     Constraints 2 and 3 follow from the fact that 𝜎1,𝑠′ is a 

probability distribution over actions and thus each action must 

be non-negative and sum to 1.  Constraint 2 and 3 are 

presented below. 

 

𝐺2𝑥 ≤  0, 𝑤ℎ𝑒𝑟𝑒 𝐺2 =  (
0 0
0 −𝑰

)  𝑎𝑛𝑑 − 𝑰 𝑖𝑠 𝑡ℎ𝑒 

 5 𝑋 5 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 

 

         𝑎𝑇𝑥 = 1,         𝑤ℎ𝑒𝑟𝑒 𝑎 =   (0, 1, … , 1)𝑇 

 

     We vertically stack 𝐺1 and 𝐺2 and define 𝐺 = (
𝐺1

𝐺2
).  This 

formulation summarizes the minimization actions taken by 

Player 2.  Additionally, Player 1 attempts to maximize his own 

reward, however the standard form used by cvxopt looks for 

minimum values.  Moreover, the value −𝑥0 needs to be 

minimized.  To do this we set 𝑐 = (−1, … , 0) resulting in 

Player 1 attempting to maximize 𝑥0, subject to the adversarial 

actions of Player 2 trying to minimize this value.  

D. Correlated - Q 

     The potential existence of multiple equilibria in Markov 

Games makes learning optimal policies challenging.  

Greenwald proposes that the use of different objective 

functions that identify a single equilibrium can solve this 

problem.  He specifically introduces four CE-Q algorithms; 

utilitarian (uCE-Q), egalitarian (eCE-Q), republican (rCE-Q) 

and libertarian  (lCE-Q).  These policies help ensure the 

existence of a single equilibrium policy and thus the 

convergence of the CE-Q.  Consistent with the charts shown 

in his paper, we implement uCE-Q which maximizes the sum 

of both players’ rewards.  The  uCE-Q value update in 3(a) of 

Algorithm 1 is given by (13).  That is, we are looking for the 

action-probability distribution of each player that maximizes 

the total reward expectation. 

 

(7) 



(13) 𝜎 ∈ a max
𝜎∈𝐶𝐸

Σ𝑖∈𝐼Σa⃗⃗∈A𝜎(𝑎⃗)𝑄𝑖(𝑠, 𝑎⃗) 

 

      To cast this as a linear programming problem, we first 

note a rationality constraint for Player 1 shown below: 

 

𝑄1,𝑠(𝑖, ∶)𝜎𝑇(𝑖, ∶) ≥ 𝑄1,𝑠(𝑘, ∶)𝜎𝑇(𝑖, ∶), ∀𝑘 = 1, … , 5  
 

     Thus, there exists some action i for Player 1 whose 

expected reward dominates all other actions given Player 2 

acts rationally following the optimal stochastic policy.  To 

encode this in conical form, we rewrite this constraint as 

𝐺1𝜎∗ ≤ 0, where 𝜎∗ is the row-wise vectorization of 𝜎 and 𝐺1 

as a block diagonal matrix where each block is equivalent to 

𝐺1,𝑖 = (
⋮

𝑄1,𝑠(𝑘, ∶) − 𝑄1,𝑠(𝑖, : )

⋮
) ∀ 𝑘 ≠ 𝑖.  Thus, 𝐺1 is a (20 X 

25) matrix and 𝜎∗ is a (25 X 1) probability vector. 

     Player 2 is bounded by the same rationality constraint but 

selects actions based on the columns of 𝑄2 and 𝜎 as shown:  

 

𝑄2,𝑠(: , 𝑘)𝜎𝑇(, 𝑗) ≥ 𝑄1,𝑠(∶, 𝑘)𝜎𝑇 (∶, 𝑗), ∀𝑘 = 1, … , 5 

 

     Similar to Player 1, we re-write this constraint as 𝐺2𝜎∗ ≤ 0 

and define 𝐺2 as a block diagonal matrix with each block 

𝐺2,𝑖 = (
⋮

𝑄2,𝑠(: , 𝑘) − 𝑄(: , 𝑖)

⋮
) , ∀ 𝑘 ≠ 𝑖.  However, since 𝜎∗ is 

the (25 X 1) vectorization of the (5 X 5) joint probability 

matrix 𝜎, the columns in 𝜎 corresponds to every 5 row 

elements in 𝜎∗.  For example, the first column 𝑐1 of 𝜎 is 

related to 𝜎∗ by 𝑐1 = (𝜎∗(0), 𝜎∗(5), 𝜎∗(10), 𝜎∗(15), 𝜎∗(20)).  

Moreover, 4 columns of zeros are required after each 𝐺2,i to 

relate 𝜎 to 𝜎∗ and ensure each 𝐺2,𝑖 is multiplied with the 

correct probabilities.  An illustration of 𝐺2 is shown in Figure 

3. 

 
Figure 3: Matrix 𝑮𝟐 

     Finally, since 𝜎∗ is a joint probability vector, two 

constraints are needed to ensure probabilities are non-negative 

and sum to 1.  Similar to Foe-Q, we ensure non-negativity of 

probabilities with the constraint 𝐺3𝜎∗ ≤  0 where 𝐺3 is the 

(25 𝑋 25) negative identity matrix.  We combine constraints 

𝐺1, 𝐺2 and 𝐺3 by vertically stacking them letting 𝐺 = (

𝐺1

𝐺2

𝐺3

).  

To ensure the joint probability vector sums to one, we define 

our final constraint as 𝑎𝑇𝜎∗ = 1, where 𝑎𝑇 is a vector of 25 

ones.  

     uCE-Q, given by (13), maximizes the sum of total reward, 

thus, we define our target c accordingly as the sum of each 

player’s vectorized Q-function; thus 𝑐 = (𝑄1,𝑠 + 𝑄2,𝑠)
𝑇
.  

Finally, we can express the problem in linear programming 

standard form summarized below:   

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:            𝑐𝑇𝜎∗ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝐺𝜎∗ ≤ 0 

𝑎𝑛𝑑                 𝑎𝑇𝜎∗ = 1 

V. EXPERIMENTS & RESULTS 

     Figure 3 in Greenwald’s paper graphs the changes in 

Player A’s Q-values at state s when Player A takes action S 

and Player B chooses to stick using traditional Q-learning, 

Friend-Q, Foe-Q and uCE-Q.  Q-value changes are defined 

over consecutive iterations by 𝐸𝑅𝑅𝑖
𝑡 = |𝑄𝑖

𝑡(𝑠, 𝑎⃗) −
𝑄𝑖

𝑡−1(𝑠, 𝑎⃗)|.  Greenwald leaves out specific details on the 

hyperparameters used in his experiments only mentioning that 

𝛾 = 0.9 and 𝜖 and 𝛼 were decayed to a minimum value of 

0.001.  Moreover, initial values of 𝜖 and 𝛼 and their respective 

rates of decay weren’t specified.   

     Several experiments were run to identify the 

hyperparameters that produce results most similar to 

Greenwald’s.  For each learning algorithm, ten initial values 

for alpha (1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1), ten 

initial values for epsilon (1.0, 0.975, 0.95, 0.925, 0.9, 0.875, 

0.85, 0.825, 0.8, 0.775) and ten decay factors (0.99999, 

0.999991, 0.999992, 0.999993, 0.999994, 0.999995, 

0.999996, 0.999997, 0.999998 and 0.999999) were tested.  All 

possible combinations of these hyperparameters were modeled 

and the set of parameters resulting in the charts most similar to 

Greenwald’s were maintained. 

A. Q-learning 

Figure 4(d) shows 𝐸𝑅𝑅𝑖
𝑡 for the Q-learning algorithm with 

𝛼 = 0.3, 𝜖 = 0.8 and their respective decay factors set to 0. 

999995 and 0. 999994.  The chart is somewhat similar to 

Greenwald ‘s with differences likely explained by inital values 

and decay speeds chosen for 𝛼; the algorithm proved to be 

very sensitive to these parameters.  Regardless, the important 

conclusion in the lack of convergence is maintained.  While 

𝐸𝑅𝑅𝑖
𝑡 is decreasing, this can be explained by the decay of 𝛼 as 

the size of the oscillations and 𝛼 decline proportionally.   
     This lack of convergence demonstrates the instability of Q-

learning in Markov Games.  Since Q-learning doesn’t consider 

the motives of others when determining an action, the Q-

function is learnt from a noisy, dynamic environment and 

convergence can’t be guaranteed.  In other words, the Q-

learner is attempting to find a deterministic policy, but since 

another agent is also acting in the environment, the world isn’t 

stationary and such a policy doesn’t exist. 

B. Friend – Q 

Figure 4(c) shows 𝐸𝑅𝑅𝑖
𝑡 for Friend-Q with 𝛼 = 0.1, 𝜖 =

1.0 and both decay factors set to 0.999995.  The chart is very 



similar to Greenwald’s and demonstrates extremely quick 

convergence due to each agent learning a deterministic policy. 

Since each agent in Friend-Q, assumes their opponent will 

cooperate, Player B erroneously assumes Player A will always 

take action E.  Thus, Player B concludes if he/she also always 

takes action E, a goal will be scored in two moves.  The first 

move in this sequence can be seen by Player B’s Q-function in 

state s shown in Figure 5; the maximum value of 95.16, and 

the actions assumed by Friend-Q, occurs when both agents 

move East on their first turn.  

     Player A similarly makes irrational assumptions about 

Player B’s motives and assumes that in state s, Player B will 

always move West, resulting in an immediate reward to Player 

A.  Thus, Player A erroneously concludes his/her action is 

irrelevant.  Moreover, while Friend-Q converges, both agents 

learn irrational policies. 

 
Figure 5: Friend-Q action-value function in state s 

C. Foe - Q 

     Figure 4(b) shows 𝐸𝑅𝑅𝑖
𝑡 for Foe-Q with 𝛼 = 0.2, 𝜖 = 1.0 

and both decay factors set to 0.999995.  The Figure closely 

resembles Greenwald’s charts with both converging in around 

800,000 iterations.  Similar to Greenwald’s experiment, the 

Foe-Q algorithm converges to a non-deterministic policy 

whereby each player randomly choses between sticking and 

moving south.  The policy for Player A in state s shown in 

Figure 6.  Note that Player A assigns no probability to actions 

E, W or N which makes sense as these moves intuitively don’t 

help Player A play defense in state s.  Moreover, we find that 

Foe-Q converges to a rational mixed-policy. 

D. Correlated - Q 

Figure 4(a) shows 𝐸𝑅𝑅𝑖
𝑡 for uCE-Q using the same 

parameters as Foe-Q.  Similar to Greenwald’s paper, the 

charts for Foe-Q and uCE-Q are nearly identical highlighting 

the fact that in zero-sum games, uCE-Q generalizes Foe-Q.  

We also find the uCE-Q algorithm converges to a similar non-

deterministic policy as Foe-Q.  As shown in Figure 6, both 

algorithms identify the joint actions taken in state s are 

approximately uniformly distributed over 4 possibilities (S, S), 

(Stick, Stick), (S, Stick) and (Stick, S). This confirms 

Greenwald’s conclusion that in zero-sum games CE-Q learns 

the same policy as minimax.   

 

 
Figure 6: uCE-Q (left table) and Foe-Q (right table) policies 

VI. CONCLUSION 

     Chris Watkins proved with repeated application of the Q-

learning rule and adequate exploration of the environment, Q-

learning convergences to the optimal action-value function 

with probability 1 [4].  The technique, however, doesn’t scale 

to multiagent environments.  Much recent research has studied 

algorithms that converge to equilibrium points in multiagent 

environments; Hu and Wellman demonstrate that Nash-Q 

converges under strict conditions and Greenwald’s CE-Q 

generalizes Nash-Q but fails to address its weaknesses.   

     The difficulties in identifying converging algorithms in 

multiagent system (MAS) stem from the existence of multiple 

equilibria.  In these environments, traditional Q-learning is 

non-ergodic attempting to converge to multiple equilibrium 

policies.  Designing systems compatible with this multiagent 

framework is a balancing act between allowing agents to 

specify their own behaviors and creating a central planner to 

coordinate agent actions.  The former can lead to 

miscoordination while the latter rarely creates rational polices.  

MAS designs relying on CE concepts can theoretically lead to 

agent coordination resulting in larger rewards.  Moreover, 

Greenwald’s paper provides an important foundation for 

future studies to identify more generalized, adaptive and 

decentralized procedures that can be applied to sophisticated 

environments.  This paper confirms Greenwald’s conclusions 

on the convergence properties of CE-Q and encourages future 

research into CE-Q as a solution in MAS design. 
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